Supporting Information

Elastic properties and electronic structures of polymorphic CsPbI₃

Zhigang Li^{a‡}, Yan Qin^{b‡}, Liyuan Dong^b, Kai Li^a, Yang Qiao^a, Wei Li^{*a}

^aSchool of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China. E-mail: <u>wl276@nankai.edu.cn</u> ^bSchool of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China. [‡]These authors contribute equally to this work.

Table S1 Lattice parameters of γ -CsPbI₃ and δ -CsPbI₃ by calculations and experiments in reference. The unit of lattice and density is Å and g/cm³, respectively. cal represents the calculated values in this work; expt represents the experimental values in the reference (1-4).

Phase	a _{cal}	a _{expt}	a _{expt}	b _{cal}	b _{expt}	b _{expt}	c _{cal}	c _{expt}	c _{expt}	density
γ-CsPbl₃	8.68	8.62(1)	8.65(4)	8.82	8.85	8.82	12.53	12.50	12.52	5.02
δ-CsPbl₃	10.45	10.46(2)	10.43(3)	4.79	4.80	4.79	17.87	17.79	17.76	5.40

Table S2 The summary of the calculated elastic constants of γ -CsPbI₃ and δ -CsPbI₃. The maximum and minimum values of shear modulus (G) and Poisson's ratio (v) are obtained by ELATE software.(5)

properties	quantities	γ-CsPbI₃	δ-CsPbI ₃		
	<i>C</i> ₁₁	33.07	29.81		
	C ₂₂	34.48	34.43		
Stiffness coefficient Cij	C ₃₃	45.48	38.38		
(GPa)	<i>C</i> ₄₄	6.73	9.27		
	<i>C</i> ₅₅	6.66	13.51		
	<i>C</i> ₆₆	17.91	19.32		
	<i>C</i> ₁₂	18.39	19.81		
	<i>C</i> ₁₃	7.35	15.38		
	C ₂₃	7.19	10.66		
Bulk modulus					
K (Gpa)		19.87	21.58		
			(001)30.4359		
Young's modulus		(001)43.450	(010)21.2714		
E (Gpa)		(010)24.034			
Shear modulus	Gmax	(100)<010>18.7230	(100)<010>19.3240		
G (GPa)					
	Gmin	(110)<001>6.6582	(110)<-110>5.8366		
Poisson's ratios v	vmax	<-55-7><5-5-7>0.5727	<010><100>0.6568		
	vmin	<55-7><-110>0.0747	<54-3><-54-3>0.0046		

Elastic constants	γ-CsPbI ₃ (3%)	γ-CsPbI ₃ (6%)
C_{11}	43.125	42.812
C_{22}	26.856	28.624
C_{33}	43.402	43.659
C_{44}	5.343	5.999
C ₅₅	7.185	3.301
C_{66}	13.511	4.318
C_{12}	19.686	20.489
C_{13}	19.932	14.527
C_{23}	10.678	1.627
Bulk modulus		
K (Gpa)	20.9	21.3
Young's modulus		
E (Gpa)	(001) 34.055	(001) 37.223
Shear modulus	G(max) 13.397	G(max) 14.936
G (GPa)	G(min) 5.343	G(min) 3.301
Poisson's ratios	v(max) 0.5953	v(max) 0.7588
V	v(min) 0.08867	v(min) 0.2829

Table S3 The elastic constants of γ -CsPbI₃ under 3% and 6% strain along <012>.

Table S4 The surface/volume ratios and bandgaps of γ -CsPbI₃ under different strain.

0 0.6169 1.830 1 0.6208 1.828 2 0.6235 1.825 3 0.6257 1.817 4 0.6278 1.788 5 0.6298 1.733	Strain	Surface/Volume(Å ⁻¹)	Eg(eV)	
1 0.6208 1.828 2 0.6235 1.825 3 0.6257 1.817 4 0.6278 1.788 5 0.6298 1.733	0	0.6169	1.830	
2 0.6235 1.825 3 0.6257 1.817 4 0.6278 1.788 5 0.6298 1.733	1	0.6208	1.828	
3 0.6257 1.817 4 0.6278 1.788 5 0.6298 1.733	2	0.6235	1.825	
4 0.6278 1.788 5 0.6298 1.733	3	0.6257	1.817	
5 0 6298 1 733	4	0.6278	1.788	
5 0.0276 1.755	5	0.6298	1.733	
6 0.6318 1.691	6	0.6318	1.691	

Table S5 Comparison of bandgaps obtained within different methods for $\gamma\text{-CsPbI}_3$ and $\delta\text{-CsPbI}_3$.

Eg(eV)				
Method	γ-CsPbI ₃	δ-CsPbI ₃		
PBE	1.83	2.48		
PBE+SOC	0.84	1.92		
HSE06	2.42	3.22		
HSE06+SOC	1.62	2.36		

Fig. S1 Charge distributions on γ -CsPbI₃ (a) and δ -CsPbI₃ (b). The red is the strength of the charge.

Fig. S2 Electronic band structures of γ -CsPbI₃ (a,c and e) and δ -CsPbI₃ (b,d and f) calculated using PBE+SOC (top), HSE06 (middle) and HSE06+SOC (bottom).

Fig. S3 DOS of γ -CsPbI₃ (a,c and e) and δ -CsPbI₃ (b,d and f) calculated using PBE+SOC (top), HSE06 (middle) and HSE06+SOC (bottom).).

Fig. S4 The charge density distribution of the conduction band minimum (CBM) (a and c) and Valence band maximum (VBM) (b and d) orbitals of γ -CsPbl₃(top) and δ -CsPbl₃(bottom).

Fig. S5 Calculated partial DOS for Pb of γ -CsPbI₃ (a) and δ -CsPbI₃ (b).

Fig. S6 Pb 6py orbitals of δ -CsPbI₃ projections on conduction band. Blue line: the conduction band of δ -CsPbI₃; Green line: the weight of Pb 6py orbitals in conduction band.

The main input and output files associated with this article on the site: <u>https://github.com/Lizhigang1/CsPbI3/find/master?q=</u>

References

- A. Marronnier, G. Roma, S. Boyer-Richard, L. Pedesseau, J.-M. Jancu, Y. Bonnassieux, C. Katan, C. C. Stoumpos, M. G. Kanatzidis and J. Even, *ACS Nano*, 2018, 12, 3477-3486.
- 2. G. Yuan, S. Qin, X. Wu, H. Ding and A. Lu, Phase Transitions, 2018, 91, 38-47.
- 3. B. Wang, N. Novendra and A. Navrotsky, *Journal of the American Chemical Society*, 2019, **141**, 14501-14504.
- 4. B. Zhao, S.-F. Jin, S. Huang, N. Liu, J.-Y. Ma, D.-J. Xue, Q. Han, J. Ding, Q.-Q. Ge and Y. Feng, *Journal of the American Chemical Society*, 2018, **140**, 11716-11725.
- 5. R. Gaillac, P. Pullumbi and F.-X. Coudert, *Journal of Physics: Condensed Matter*, 2016, 28, 275201.