Supporting information for

More complex, less complicated? Explicit solvation of hydroxyl groups for the analysis of VCD spectra

Luisa Weirich,^a Katharina Blanke,^a Christian Merten^{*a}

 a) Ruhr Universität Bochum, Lehrstuhl für Organische Chemie II Universitätsstraße 150 44801 Bochum, Germany christian.merten@ruhr-uni-bochum.de

Contents

1.	Additional spectra	2
2.	Conformational analysis of neomenthol	6
3.	Conformational analysis of menthol	10
4.	Conformational analysis of borneol	14
5.	Conformational analysis of isoborneol	17
6.	Cartesian coordinates of selected structure	20

1. Additional spectra

Figure S1. Experimental and calculated spectra of neomenthol (left) and menthol (right). Panel A shows an overlay of experimental and computed spectra to highlight similarities.

Figure S2. Experimental and calculated spectra of borneol (left) and isoborneol (right). Panel A shows an overlay of experimental and computed spectra to highlight similarities.

Figure S3. Line spectra of the conformer *c1* of menthol, borneol and isoborneol.

Figure S4. Experimental spectra of the enantiomers of borneol, isoborneol, menthol and terpinen-4-ol. The enantiomers of the other alcohols were not available.

2. Conformational analysis of neomenthol

Table S4. Relative zero-point corrected and Gibbs Free Energies, ΔE_{ZPC} and ΔG_{298K} , and the corresponding Boltzmann populations for the conformers of **neomenthol** solvated with the IEFPCM of **DMSO**.

conformer	ΔE _{ZPC} [kcal mol ⁻¹]	ΔG_{298K} [kcal mol ⁻¹]	pop-ΔE_{ZPC} [%]	рор-∆G _{298K} [%]	α _{OH} [deg]	α _{iPr} [deg]
neomenthol-c1	0.00	0.00	36.5	40.8	179.8	176.0
neomenthol-c2	0.19	0.33	26.5	23.3	-60.6	177.4
neomenthol-c3	0.31	0.29	21.5	25.1	62.6	176.7
neomenthol-c4	1.24	1.53	4.5	3.1	178.6	-78.7
neomenthol-c5	1.56	1.75	2.6	2.1	64.7	-78.4
neomenthol-c6	1.56	1.80	2.6	2.0	-71.1	-82.0
neomenthol-c7	1.57	1.90	2.6	1.7	176.6	55.4
neomenthol-c8	1.83	2.14	1.7	1.1	58.1	56.1
neomenthol-c9	1.90	2.28	1.5	0.9	-60.9	62.9

^{a)} referenced to E_{ZPC} = -468.211562 hartree and G_{298K} = -468.249376 hartree.

(1S,2S,5R)-neomenthol-c1

(1S,2S,5R)-neomenthol-c3

Figure S5. Conformers of (1S,2S,5R)-neomenthol and torsional angle definition.

Table S5. Relative zero-point corrected and Gibbs Free Energies, ΔE_{ZPC} and ΔG_{298K} , and the corresponding Boltzmann populations for the conformers of **neomenthol explicitly solvated** with one molecule of **DMSO-d**₆ and implicitly by its IEFPCM.

conformer	ΔE_{ZPC} [kcal mol ⁻¹]	ΔG_{298K} [kcal mol ⁻¹]	pop-∆E _{ZPC} [%]	pop-∆G _{298K} [%]
neomenthol-c1··(DMSO-d ₆) ^A	0.00	0.00	33.1	53.0
neomenthol-c1 $\cdot\cdot$ (DMSO-d ₆) ^T	0.21	0.33	23.3	30.2
neomenthol-c2··(DMSO-d ₆) ^A	0.58	1.19	12.5	7.1
neomenthol-c2··(DMSO-d ₆) ^T	0.77	1.82	9.0	2.4
neomenthol-c3··(DMSO-d ₆) ^A	1.25	2.06	4.0	1.6
neomenthol-c4··(DMSO-d ₆) ^A	1.35	2.27	3.4	1.1
neomenthol-c4 $\cdot\cdot$ (DMSO-d ₆) ^T	1.54	2.87	2.5	0.4
neomenthol-c3··(DMSO- d_{6}) ^T	1.55	2.57	2.4	0.7
neomenthol-c6··(DMSO-d ₆) ^A	1.68	2.76	2.0	0.5
neomenthol-c7 $\cdot\cdot$ (DMSO-d ₆) ^A	1.69	2.74	1.9	0.5
neomenthol-c9··(DMSO-d ₆) ^A	1.76	2.84	1.7	0.4
neomenthol-c7 $\cdot\cdot$ (DMSO-d ₆) ^T	1.82	2.43	1.5	0.9
neomenthol-c6··(DMSO-d ₆) ^T	1.87	3.06	1.4	0.3
neomenthol-c9··(DMSO-d ₆) ^T	1.88	2.47	1.4	0.8
neomenthol-c5··(DMSO-d ₆) ^A	2.64	3.76	0.4	0.1
neomenthol-c5··(DMSO-d ₆) ^T	2.87	4.42	0.3	0.0
neomenthol-c8··(DMSO-d ₆) ^A	2.97	4.37	0.2	0.0
neomenthol-c8··(DMSO-d ₆) ^T	3.15	4.60	0.2	0.0

^{a)} referenced to E_{ZPC} = -1021.456372 hartree and G_{298K} = -1021.510299 hartree.

neomenthol-*c1*··(DMSO-d₆)^T

neomenthol-c1··(DMSO-d₆)^A

Figure S6. Structures of the DMSO-solvated conformer *c1* of neomenthol. The difference between the two structures is the relative orientation of the DMSO molecule: Methyl groups are pointing towards (T) or away (A) from the molecule.

conformer	ΔE _{ZPC} [kcal mol ⁻¹]	ΔG _{298K} [kcal mol ⁻¹]	pop-ΔE_{ZPC} [%]	рор-∆G _{298К} [%]
neomenthol-c1	0.00	0.00	36.5	40.7
neomenthol-c2	0.19	0.33	26.5	23.2
neomenthol-c3	0.31	0.28	21.5	25.3
neomenthol-c4	1.24	1.53	4.5	3.1
neomenthol-c5	1.56	1.75	2.6	2.1
neomenthol-c6	1.56	1.79	2.6	2.0
neomenthol-c7	1.57	1.90	2.6	1.6
neomenthol-c8	1.83	2.14	1.7	1.1
neomenthol-c9	1.90	2.29	1.5	0.9

Table S6. Relative zero-point corrected and Gibbs Free Energies, ΔE_{ZPC} and ΔG_{298K} , and the corresponding Boltzmann populations for the conformers of **neomenthol** solvated with the IEFPCM of **acetonitrile**.

^{a)} referenced to E_{ZPC} = -468.211497 hartree and G_{298K} = -468.249312 hartree.

Table S7. Relative zero-point corrected and Gibbs Free Energies, ΔE_{ZPC} and ΔG_{298K} , and the corresponding Boltzmann populations for the conformers of **neomenthol explicitly solvated** with one molecule of **acetonitrile-d₃** and implicitly by its IEFPCM.

conformer	ΔE _{ZPC} [kcal mol ⁻¹]	ΔG_{298K} [kcal mol ⁻¹]	pop-ΔE_{ZPC} [%]	рор- ДG _{298К} [%]
neomenthol-c1··(ACN-d ₃)	0.00	0.00	50.9	57.2
neomenthol-c2··(ACN-d ₃)	0.53	0.70	20.7	17.7
neomenthol-c3··(ACN-d ₃)	1.00	1.34	9.3	6.0
neomenthol-c4··(ACN-d ₃)	1.20	1.09	6.7	9.0
neomenthol-c9··(ACN-d ₃)	1.57	1.66	3.6	3.5
neomenthol-c7··(ACN-d ₃)	1.58	1.90	3.5	2.3
neomenthol-c6··(ACN-d ₃)	1.59	1.66	3.5	3.5
neomenthol-c5··(ACN-d ₃)	2.26	2.74	1.1	0.6
neomenthol-c8··(ACN-d ₃)	2.57	3.21	0.7	0.3

^{a)} referenced to $E_{ZPC} = -600.986709$ hartree and $G_{298K} = -601.037189$ hartree.

conformer	ΔE_{ZPC} [kcal mol ⁻¹]	ΔG_{298K} [kcal mol ⁻¹]	pop-ΔE_{ZPC} [%]	рор- ДG _{298К} [%]
neomenthol-c1	0.00	0.00	36.8	39.1
neomenthol-c2	0.20	0.32	26.5	22.9
neomenthol-c3	0.34	0.21	20.7	27.6
neomenthol-c4	1.19	1.50	4.9	3.1
neomenthol-c7	1.53	1.88	2.8	1.6
neomenthol-c6	1.56	1.77	2.6	2.0
neomenthol-c5	1.58	1.76	2.5	2.0
neomenthol-c8	1.85	2.16	1.6	1.0
neomenthol-c9	1.92	2.31	1.4	0.8

Table S8. Relative zero-point corrected and Gibbs Free Energies, ΔE_{ZPC} and ΔG_{298K} , and the corresponding Boltzmann populations for the conformers of **neomenthol** solvated with the IEFPCM of **chloroform**.

^{a)} referenced to E_{ZPC} = -468.210028 hartree and G_{298K} = -468.247834 hartree.

Table S9. Relative zero-point corrected and Gibbs Free Energies, ΔE_{ZPC} and ΔG_{298K} , and the corresponding Boltzmann populations for the **dimers of neomenthol** solvated with the IEFPCM of **chloroform**. Only dimers build based on the three lowest energy conformers are considered.

conformer	ΔE_{ZPC}	ΔG _{298K}	pop-∆E _{ZPC}	рор-∆G _{298К}
	[kcal mol ⁻¹]	[kcal mol ⁻¹]	[%]	[%]
neomenthol-(c1··c3)	0.00	0.07	31.0	24.4
neomenthol-(c1··c2)	0.26	0.00	19.9	27.5
neomenthol-(c1··c1)	0.47	0.50	14.0	11.9
neomenthol-(c2…c2)	0.55	0.22	12.3	19.1
neomenthol-(c2…c3)	0.70	0.55	9.4	10.9
neomenthol-(c3…c3)	1.00	1.55	5.8	2.0
neomenthol-(c2…c1)	1.30	1.47	3.4	2.3
neomenthol-(c2…c3)	1.42	1.79	2.8	1.3
neomenthol-(c3…c3)	1.86	2.23	1.3	0.6

^{a)} referenced to E_{ZPC} = -936.424386 hartree and G_{298K} = -936.484766 hartree.

3. Conformational analysis of menthol

Table S10. Relative zero-point corrected and Gibbs Free Energies, ΔE_{ZPC} and ΔG_{298K} , and the corresponding Boltzmann populations for the conformers of **menthol** solvated with the IEFPCM of **DMSO**.

conformer	ΔE _{ZPC} [kcal mol ⁻¹]	ΔG_{298K} [kcal mol ⁻¹]	pop-∆E_{ZPC} [%]	pop-ΔG_{298K} [%]	α _{OH} [deg]	α _{iPr} [deg]
menthol-c1	0.00	0.00	32.8	35.1	-64.2	-67.4
menthol-c2	0.04	0.08	30.8	30.9	-178.1	-65.9
menthol-c3	0.15	0.18	25.6	25.8	68.2	-65.7
menthol-c4	1.22	1.38	4.2	3.4	-62.3	79.1
menthol-c5	1.25	1.52	4.0	2.7	-178.7	79.9
menthol-c6	1.79	1.96	1.6	1.3	71.3	80.4
menthol-c7	2.66	2.86	0.4	0.3	-179.8	-150.4
menthol-c8	2.71	2.84	0.3	0.3	-69.3	-152.3
menthol-c9	2.97	3.05	0.2	0.2	64.1	158.9

^{a)} referenced to E_{ZPC} = -468.213208 hartree and G_{298K} = -468.25096 hartree.

(1R,2S,5R)-menthol-c1

(1R,2S,5R)-menthol-c2

(1R,2S,5R)-menthol-c3

Figure S7. Conformers of (1R,2S,5R)- menthol and torsional angle definition.

conformer	ΔE_{ZPC}	ΔG _{298K}	pop-∆E _{ZPC}	рор-∆G _{298К}
	[kcal mol ⁻¹]	[kcal mol ⁻¹]	[%]	[%]
menthol-c2··(DMSO-d ₆) ^A	0.00	0.18	24.93	21.06
menthol-c2··(DMSO-d ₆) ^T	0.19	0.00	18.18	28.70
menthol-c1··(DMSO-d ₆) ^A	0.37	0.50	13.34	12.24
menthol-c3··(DMSO-d ₆) ^A	0.37	0.50	13.34	12.33
menthol-c3··(DMSO-d ₆) ^T	0.39	0.31	12.94	17.10
menthol-c1··(DMSO-d ₆) ^T	0.55	0.98	9.88	5.45
menthol-c5··(DMSO-d ₆) ^A	1.34	1.86	2.59	1.24
menthol-c5··(DMSO-d ₆) ^T	1.59	2.25	1.70	0.65
menthol-c4··(DMSO-d ₆) ^A	1.80	2.65	1.19	0.33
menthol-c4··(DMSO-d ₆) ^T	1.99	2.49	0.87	0.43
menthol-c7··(DMSO-d ₆) ^A	2.63	4.07	0.29	0.03
menthol-c7··(DMSO-d ₆) ^T	2.67	3.07	0.27	0.16
menthol-c8··(DMSO-d ₆) ^A	3.07	3.47	0.14	0.08
menthol-c9··(DMSO-d ₆) ^A	3.08	3.29	0.14	0.11
menthol-c9··(DMSO-d ₆) ^T	3.23	3.71	0.11	0.05
menthol-c8··(DMSO-d ₆) ^T	3.39	4.24	0.08	0.02

Table S11. Relative zero-point corrected and Gibbs Free Energies, ΔE_{ZPC} and ΔG_{298K} , and the corresponding Boltzmann populations for the conformers of **menthol explicitly solvated** with one molecule of **DMSO-d**₆ and implicitly by its IEFPCM.

^{a)} referenced to $E_{ZPC} = -1021.458018$ hartree and $G_{298K} = -1021.510874$ hartree.

Table S12. Relative zero-point corrected and Gibbs Free Energies, ΔE_{ZPC} and ΔG_{298K} , and the corresponding Boltzmann populations for the conformers of **menthol** solvated with the IEFPCM of **acetonitrile**.

conformer	ΔE _{ZPC} [kcal mol ⁻¹]	ΔG_{298K} [kcal mol ⁻¹]	ρορ-ΔΕ_{ΖΡC} [%]	рор- ДG _{298К} [%]
menthol-c1	0.00	0.00	32.7	34.9
menthol-c2	0.03	0.07	31.0	31.1
menthol-c3	0.15	0.18	25.6	25.8
menthol-c4	1.22	1.37	4.2	3.4
menthol-c5	1.24	1.50	4.0	2.8
menthol-c6	1.79	1.95	1.6	1.3
menthol-c7	2.65	2.85	0.4	0.3
menthol-c8	2.71	2.83	0.3	0.3
menthol-c9	2.97	3.04	0.2	0.2

^{a)} referenced to E_{ZPC} = -468.213136 hartree and G_{298K} = -468.250881 hartree.

molecule of account ne agains inplicing of its inflicted.						
conformer	$\frac{\Delta E_{ZPC}}{[kcal mol-1]}$	ΔG_{298K} [kcal mol ⁻¹]	pop-ΔE_{ZPC} [%]	pop-ΔG_{298K} [%]		
menthol-c2··(ACN-d ₃)	0.00	0.00	39.2	44.0		
menthol-c3··(ACN-d ₃)	0.20	0.33	27.9	25.2		
menthol-c1··(ACN-d ₃)	0.27	0.43	24.7	21.4		
menthol-c5··(ACN-d ₃)	1.26	1.19	4.7	5.9		
menthol-c4··(ACN-d ₃)	1.63	1.72	2.5	2.4		
menthol-c7··(ACN-d ₃)	2.64	2.90	0.5	0.3		
menthol-c8··(ACN-d ₃)	2.89	2.79	0.3	0.4		
menthol-c9··(ACN-d ₃)	2.95	2.83	0.3	0.4		

Table S13. Relative zero-point corrected and Gibbs Free Energies, ΔE_{ZPC} and ΔG_{298K} , and the corresponding Boltzmann populations for the conformers of **menthol explicitly solvated** with one molecule of **acetonitrile-d₃** and implicitly by its IEFPCM.

^{a)} referenced to E_{ZPC} = -600.986709 hartree and G_{298K} = -601.037189 hartree.

Table S14. Relative zero-point corrected and Gibbs Free Energies, ΔE_{ZPC} and ΔG_{298K} , and the corresponding Boltzmann populations for the conformers of **menthol** solvated with the IEFPCM of **chloroform**.

conformer	ΔE_{ZPC} [kcal mol ⁻¹]	ΔG_{298K} [kcal mol ⁻¹]	pop-ΔE_{ZPC} [%]	pop-ΔG_{298K} [%]
menthol-c2	0.00	0.00	33.6	35.9
menthol-c1	0.03	0.06	31.7	32.4
menthol-c3	0.22	0.28	23.0	22.4
menthol-c5	1.16	1.39	4.7	3.4
menthol-c4	1.21	1.40	4.4	3.4
menthol-c6	1.83	1.93	1.5	1.4
menthol-c7	2.58	2.79	0.4	0.3
menthol-c8	2.61	2.40	0.4	0.6
menthol-c9	2.97	3.04	0.2	0.2

^{a)} referenced to E_{ZPC} = -468.211550 hartree and G_{298K} = -468.249284 hartree.

Table S15. Relative zero-point corrected and Gibbs Free Energies, ΔE_{ZPC} and ΔG_{298K} , and the corresponding Boltzmann populations for the **dimers of menthol** solvated with the IEFPCM of **chloroform**. Only dimers build based on the three lowest energy conformers are considered.

conformer	ΔE _{ZPC} [kcal mol ⁻¹]	ΔG_{298K} [kcal mol ⁻¹]	pop-ΔE_{ZPC} [%]	pop-ΔG_{298K} [%]
menthol-(c2··c1)	0.00	0.40	25.1	12.2
menthol-(c1··c1)	0.29	0.07	15.3	21.3
menthol-(c3··c1)	0.36	0.00	13.6	23.9
menthol-(c2··c3)	0.40	0.91	12.7	5.1
menthol-(c2…c2)	0.43	0.30	12.1	14.3
menthol-(c3··c2)	0.61	0.49	8.9	10.4
menthol-(c1··c2)	0.81	0.56	6.4	9.3
menthol-(c1··c3)	0.87	1.15	5.7	3.4
menthol-(c3··c3)	0.90	1.58	5.5	1.6

^{a)} referenced to E_{ZPC} = -936.428049 hartree and G_{298K} = -936.488877 hartree.

4. Conformational analysis of borneol

Table S16. Relative zero-point corrected and Gibbs Free Energies, ΔE_{ZPC} and ΔG_{298K} , and the corresponding Boltzmann populations of the conformers of **borneol** solvated with in the IEFPCM of **DMSO**.

conformer	ΔE _{ZPC} [kcal mol ⁻¹]	ΔG_{298K} [kcal mol ⁻¹]	pop-ΔE_{ZPC} [%]	рор-∆G _{298К} [%]
borneol-c1 (gauche -)	0.00	0.00	44.5	42.4
borneol-c2 (trans)	0.23	0.15	30.1	32.9
borneol-c3 (gauche +)	0.33	0.32	25.5	24.7

^{a)} referenced to $E_{ZPC} = -467.002864$ hartree and $G_{298K} = -467.037716$ hartree.

Figure S8. Conformers of (1R,2S)-borneol. The torsional angle C_Q -C*-O-H, which is used to differentiate the conformers, is highlighted for borneol-c3.

Table S17. Relative zero-point corrected and Gibbs Free Energies, ΔE_{ZPC} and ΔG_{298K} , and the corresponding Boltzmann populations of the conformers of **borneol explicitly solvated** with one molecule of **DMSO-d₆** and implicitly by its IEFPCM.

conformer	ΔE _{ZPC} [kcal mol ⁻¹]	ΔG_{298K} [kcal mol ⁻¹]	pop-ΔE_{ZPC} [%]	рор- ΔG_{298К} [%]
borneol-c1··(DMSO-d ₆) ^T	0.19	0.20	21.2	22.6
borneol-c1··(DMSO-d ₆) ^A	0.00	0.24	29.2	21.0
borneol-c2··(DMSO-d ₆) ^T	0.25	0.00	19.1	31.7
borneol-c2··(DMSO-d ₆) ^A	0.15	0.23	22.7	21.6
borneol-c3··(DMSO-d ₆) ^T	1.29	3.45	3.3	0.1
borneol-c3··(DMSO-d ₆) ^A	1.11	1.39	4.5	3.0

^{a)} referenced to $E_{ZPC} = -1020.247645$ hartree and $G_{298K} = -1020.298426$ hartree.

Table	S18.	Relative	zero-point	corrected	and	Gibbs	Free	Energies	, ΔE_{ZPC}	and	ΔG_{298K} ,	and	the
corresp	ondir	ng Boltzm	ann popula	tions of th	ne co	nforme	rs of	borneol	solvated	with	the IEI	FPCM	l of
aceton	itrile.												

conformer	ΔE_{ZPC} [kcal mol ⁻¹]	ΔG_{298K} [kcal mol ⁻¹]	рор-ДЕ_{ZPC} [%]	pop-∆G _{298K} [%]
borneol-c1	0.00	0.00	44.3	42.1
borneol-c2	0.23	0.14	30.3	33.2
borneol-c3	0.33	0.31	25.4	24.7

^{a)} referenced to E_{ZPC} = -467.002793 hartree and G_{298K} = -467.037641 hartree.

Table S19. Relative zero-point corrected and Gibbs Free Energies, ΔE_{ZPC} and ΔG_{298K} , and the corresponding Boltzmann populations of the conformers of **borneol explicitly solvated** with one molecule of **acetonitrile-d₃** and implicitly by its IEFPCM.

conformer	ΔE _{ZPC} [kcal mol ⁻¹]	ΔG_{298K} [kcal mol ⁻¹]	ρορ-ΔΕ_{ΖΡC} [%]	рор- ДG _{298К} [%]
borneol-c1··(ACN-d ₃)	0.00	0.63	47.1	22.1
borneol-c2··(ACN-d ₃)	0.07	0.00	41.8	63.9
borneol-c3··(ACN-d ₃)	0.86	0.90	11.1	13.9

^{a)} referenced to E_{ZPC} = -599.778254 hartree and G_{298K} = -599.826429 hartree.

Table S20. Relative zero-point corrected and Gibbs Free Energies, ΔE_{ZPC} and ΔG_{298K} , and the corresponding Boltzmann populations of the conformers of **borneol** solvated with in the IEFPCM of **chloroform**.

conformer	ΔE _{ZPC} [kcal mol ⁻¹]	ΔG_{298K} [kcal mol ⁻¹]	pop-ΔE_{ZPC} [%]	рор- ДG _{298К} [%]
borneol-c1	0.00	0.00	43.3	39.2
borneol-c2	0.16	0.03	33.2	37.2
borneol-c3	0.36	0.30	23.5	23.6

^{a)} referenced to E_{ZPC} = -467.001217 hartree and G_{298K} = -467.036017 hartree.

conformer (D··A)	ΔE _{ZPC} [kcal mol ⁻¹]	ΔG_{298K} [kcal mol ⁻¹]	рор-ДЕ_{ZPC} [%]	рор- ДG _{298К} [%]
borneol-(c1··c1)	0.17	0.14	18.4	21.4
borneol-(c1··c2)	0.59	0.71	9.0	8.2
borneol-(c1··c3)	0.23	0.53	16.6	11.0
borneol-(c2··c1)	0.00	0.00	24.3	27.0
borneol-(c2··c2)	0.77	0.67	6.7	8.7
borneol-(c2··c3)	0.25	0.27	16.1	17.2
borneol-(c3··c1)	1.15	1.80	3.5	1.3
borneol-(c3··c2)	1.78	2.48	1.2	0.4
borneol-(c3··c3)	1.02	1.02	4.3	4.8

Table S21. Relative zero-point corrected and Gibbs Free Energies, ΔE_{ZPC} and ΔG_{298K} , and the corresponding Boltzmann populations of the **dimers of borneol** solvated with in the IEFPCM of **chloroform**.

^{a)} referenced to E_{ZPC} = -934.006835 hartree and G_{298K} = -934.062585 hartree.

5. Conformational analysis of isoborneol

Table S22. Relative zero-point corrected and Gibbs Free Energies, ΔE_{ZPC} and ΔG_{298K} , and the corresponding Boltzmann populations for the conformers of **isoborneol** solvated with in the IEFPCM of **DMSO**.

conformer	ΔE _{ZPC} [kcal mol ⁻¹]	ΔG _{298K} [kcal mol ⁻¹]	pop-ΔE_{ZPC} [%]	рор- ДG _{298К} [%]
isoborneol-c1 (gauche +)	0.00	0.00	69.0	68.1
isoborneol-c2 (trans)	0.69	0.62	21.6	23.8
isoborneol-c3 (gauche -)	1.18	1.26	9.3	8.1

^{a)} referenced to E_{ZPC} = -467.002486 hartree and G_{298K} = -467.037312 hartree.

Figure S9. Conformers of (1R,2R)-isoborneol. The torsional angle C_Q -C*-O-H, which is used to differentiate the conformers, is highlighted for isoborneol-c3.

Table S23. Relative zero-point corrected and Gibbs Free Energies, ΔE_{ZPC} and ΔG_{298K} , and the corresponding Boltzmann populations for the conformers of **isoborneol explicitly solvated** with one molecule of **DMSO-d**₆ and implicitly by its IEFPCM.

conformer	ΔE _{ZPC} [kcal mol ⁻¹]	ΔG_{298K} [kcal mol ⁻¹]	pop-ΔE_{ZPC} [%]	рор- ДG _{298К} [%]
isoborneol-c1··(DMSO-d ₆) ^T	0.00	0.00	64.9	37.5
isoborneol-c1··(DMSO-d ₆) ^A	1.14	0.40	9.4	19.2
isoborneol-c2 $\cdot\cdot$ (DMSO-d ₆) ^T	0.70	0.47	20.1	16.9
isoborneol-c2··(DMSO-d ₆) ^A	1.86	0.33	2.8	21.4
isoborneol-c3 $\cdot\cdot$ (DMSO-d ₆) ^T	1.87	1.18	2.8	5.1
isoborneol-c3··(DMSO-d ₆) ^A	4.11	5.09	0.1	0.0

^{a)} referenced to $E_{ZPC} = -1020.003261$ hartree and $G_{298K} = -1020.051375$ hartree.

Table S24. Relative zero-point corrected and Gibbs Free Energies, ΔE_{ZPC} and ΔG_{298K} , and the corresponding Boltzmann populations for the conformers of **isoborneol** solvated with in the IEFPCM of **acetonitrile**.

conformer	ΔE_{ZPC}	ΔG_{298K}	pop-ΔE _{ZPC}	рор- Д G _{298К}
	[kcal mol ⁻¹]	[kcal mol ⁻¹]	[%]	[%]
isoborneol-c1	0.00	0.00	69.1	68.3
isoborneol-c2	0.69	0.63	21.6	23.7
isoborneol-c3	1.19	1.26	9.3	8.0

^{a)} referenced to $E_{ZPC} = -467.002423$ hartree and $G_{298K} = -467.037248$ hartree.

Table S25. Relative zero-point corrected and Gibbs Free Energies, ΔE_{ZPC} and ΔG_{298K} , and the corresponding Boltzmann populations for the conformers of **isoborneol explicitly solvated** with one molecule of **acetonitrile-d₃** and implicitly by its IEFPCM.

conformer	ΔE _{ZPC} [kcal mol ⁻¹]	ΔG _{298K} [kcal mol ⁻¹]	pop-ΔE_{ZPC} [%]	рор- ДG _{298К} [%]
isoborneol-c1··(ACN-d ₃)	0.00	0.20	52.9	32.7
isoborneol-c2··(ACN-d ₃)	0.47	0.00	24.0	46.2
isoborneol-c3··(ACN-d ₃)	0.49	0.46	23.2	21.1

^{a)} referenced to $E_{ZPC} = -599.777611$ hartree and $G_{298K} = -599.824916$ hartree.

Table S26. Relative zero-point corrected and Gibbs Free Energies, ΔE_{ZPC} and ΔG_{298K} , and the corresponding Boltzmann populations for the conformers of **isoborneol** solvated with in the IEFPCM of **chloroform**.

conformer	ΔE _{ZPC} [kcal mol ⁻¹]	ΔG_{298K} [kcal mol ⁻¹]	pop-ΔE_{ZPC} [%]	рор- ДG _{298К} [%]
isoborneol-c1	0.00	0.00	70.3	69.3
isoborneol-c2	0.70	0.65	21.4	23.2
isoborneol-c3	1.27	1.32	8.3	7.5

^{a)} referenced to E_{ZPC} = -467.000972 hartree and G_{298K} = -467.035766 hartree.

Conformer (D··A)	ΔE_{ZPC} [kcal mol ⁻¹]	ΔG_{298K} [kcal mol ⁻¹]	рор-ДЕ_{ZPC} [%]	рор- ДG _{298К} [%]
isoborneol-(c1··c1)	0.04	0.24	32.5	20.9
isoborneol-(c1··c2)	1.35	2.05	3.6	1.0
isoborneol-(c1··c3)	0.96	0.58	6.9	11.9
isoborneol-(c2··c1)	0.63	0.44	12.0	15.1
isoborneol-(c2··c2)	1.92	1.50	1.4	2.5
isoborneol-(c2··c3)	1.47	0.97	2.9	6.1
isoborneol-(c3··c1)	0.00	0.00	34.9	31.6
isoborneol-(c3··c2)	1.52	1.67	2.7	1.9
isoborneol-(c3··c3)	1.43	0.74	3.1	9.0

Table S27. Relative zero-point corrected and Gibbs Free Energies, ΔE_{ZPC} and ΔG_{298K} , and the corresponding Boltzmann populations for the **dimers of isoborneol** solvated with in the IEFPCM of **chloroform**.

^{a)} referenced to E_{ZPC} = -934.00639 hartree and G_{298K} = -934.061331 hartree.

6. Cartesian coordinates of selected structure

neomenthol-c1

С	0.05406900	-1.30985000	0.51687600
С	-0.71893000	-0.22479300	-0.25688700
С	0.02908800	1.11734600	-0.18002500
С	1.49459900	0.98499200	-0.60589300
С	2.26499400	-0.09295000	0.16557400
С	1.51501500	-1.42597500	0.06730000
Н	-0.70632100	-0.50217900	-1.32075700
Н	0.01789400	-1.08042400	1.58736800
Н	-0.43394600	-2.27767000	0.38941500
Н	1.51656700	0.74962300	-1.67746700
Н	1.98765000	1.95818300	-0.49649600
Н	2.28762400	0.20074900	1.22170500
Н	1.54751200	-1.77516800	-0.97345000
Н	2.02772200	-2.18673500	0.66513900
Н	-0.45460700	1.83279900	-0.85274600
С	3.70939400	-0.20974500	-0.32478400
Н	4.24104400	0.74089500	-0.22655800
Н	4.26081900	-0.96178600	0.24632900
Н	3.74229700	-0.50210300	-1.37930300
С	-2.20676500	-0.12464000	0.16749800
Н	-2.22847200	0.08011700	1.24328800
С	-2.94869900	1.01865400	-0.53997000
H	-4.00408100	1.01831100	-0.25555300
H	-2.54147200	1.99786700	-0.28519400
H	-2.90120700	0.90471300	-1.62818700
C	-2.96031800	-1.44121700	-0.07670700
H	-2.55361000	-2.27167400	0.50160900
Н	-4.01203800	-1.33453700	0.20120300
H	-2.92500200	-1.72010900	-1.13526400
0	-0.08168200	1.61537600	1.16992400
Н	0.39040300	2.45518600	1.21/63500
n a a man thal a 2			
C C C	_0 05832100	1 30955400	0 50326100
C	0.71279900	1.30933400	-0.26235600
C	-0.03833600	-1 12706500	-0 16654200
C	-1 49976800	-1 00051100	-0 59028600
C	-2 26958000	0 08772200	0 16839400
C	-1 52011800	1 41977400	0 05494700
H	0.70137600	0.48431500	-1.32949000
н	-0.02127500	1.08745400	1.57562900
Н	0.42787500	2.27714700	0.36861000
Н	-1.52139400	-0.77436500	-1.66299700
Н	-1.98683800	-1.97236700	-0.46346100
Н	-2.29532000	-0.19354500	1.22751600

Н	-1 55407100	1 75825900	-0 98927300
н	-2 03164700	2 18678900	0 64569700
н	0 44101100	-1 85413800	-0 82940400
C C	-3 71262500	0 19869500	-0.32736100
н	-4 24492800	-0 75027900	-0 21764200
н	-4 26522200	0.95869600	0.23193500
н	-3 74234100	0.47670100	-1 38590400
II C	2 20299500	0.47070100	0 157/3100
U U	2.202000	-0.09748800	1 23321800
II C	2.23720300	-1 00075500	_0 57803900
U U	2.95427900	-1.00075500	-0.29000100
H	2 55918200	-1 99511800	-0.36097900
H	2.33310200	-0 85512900	-1 66191000
n C	2.90095700	1 44620000	-0.05630600
Ч	2.53012000	2 25901100	0.03030000
n	2.54454100	1 33508600	0.21026600
n	2 90/15000	1 75205200	-1 10661700
\cap	_0 03481300	-1 66331500	1 17/16500
Ч	-0.03401300	-1.00331300	1 1117410500
п	0.0/040000	-1.01100300	1.44470000
n a a m an th a L a 2			
C C	-0 05475600	1 3088/800	0 50273100
C	0.03473000	0 21706900	-0.26092600
C	-0.03045600	-1 12882200	-0 16557400
C	-1 49385400	-0 99905500	-0 60076500
C	-2 26641300	0.08736100	0.00070300
C	-1 51642300	1 42031200	0.15300700
Ч	0 70373000	0 48721000	-1 32669700
н	-0.01658600	1 10174900	1 58068600
н	0 43304200	2 27563800	0 37067700
н	-1 51203400	-0 76294600	-1 67183300
н	-1 98276000	-1 97085900	-0 48259300
н	-2 30565400	-0 19287100	1 22109100
н	-1 54697500	1 76006900	-0 99036300
н	-2 02937400	2 18558300	0 64422400
н	0 45264900	-1 85598900	-0 81832700
C	-3 70979500	0 19895900	-0 33581100
Н	-4,24076900	-0.75072900	-0.22846800
Н	-4.26225100	0.95766500	0.22501800
н	-3,73747000	0.47906100	-1,39353700
C	2,20783100	0.12175600	0.16222400
Н	2.23207200	-0.08901000	1.23728100
C	2.95129800	-1.01657300	-0.55184200
Н	4.00830700	-1.01161300	-0.27396900
	2.55121200	-1.99863200	-0.29694900
н	2-89609700	-0.90044500	-1.63943100
C	2,95830500	1.44135100	-0.07496900
H	2.55116300	2.26763200	0.50903500
H	4.01036800	1.33465600	0.20139200

H	2.92160600	1.72664700	-1.13166700
0	0.07672300	-1.72607200	1.14392600
Н	-0.33582400	-1.14147100	1.79049700
neomenthol- <i>c1</i> ··(A	CN-d ₃)		
С	-2.26267000	0.65351100	-0.77308900
С	-1.73036000	-0.39010400	0.22747800
С	-0.22547600	-0.17132100	0.46882000
С	0.07976900	1.27580800	0.87714700
С	-0.44842400	2.31732300	-0.11609100
C	-1.94681300	2.09161700	-0.34648800
H	-2.21413500	-0.19785100	1.19620900
H	-1.82431900	0.46004900	-1.75819000
H	-3.34302300	0.54668100	-0.88647600
H 	-0.36985300	1.45562000	1.86234700
H 	1.16185400	1.38796400	1.00584100
H 	0.06384200	2.1582//00	-1.0/232100
H	-2.486//300	2.32102200	0.58208800
H	-2.31/91200	2.79291200	-1.10142400
H	0.09786000	-0.82382900	1.28/21100
U	-0.1489/400	3.74307900	0.35099000
H	0.92483300	3.89961600	0.48/31400
н	-0.50478700	4.40024000	-0.37435100
n C	-2 08294200	-1 84509600	-0 17384700
ч	-2.00294200	-2 02258700	-0.17384700
C	-1 48017200	-2 88471500	0 78220800
н	-1 79780700	-3 89115000	0.49732800
н	-0.38963500	-2.87128700	0.77524300
H	-1.81431700	-2.71333200	1.81111100
С	-3.60137600	-2.06388600	-0.26194800
H	-4.07257700	-1.43928200	-1.02184500
Н	-3.82220700	-3.10469000	-0.51274600
Н	-4.08322600	-1.84604300	0.69728300
0	0.48655000	-0.54140200	-0.72270300
Н	1.43844400	-0.53030300	-0.52901600
С	4.57832800	-0.71336200	-0.17983400
Ν	3.43380900	-0.64676600	-0.26473100
С	6.02608100	-0.79671400	-0.07361600
H(Iso=2)	6.35605900	-1.80901100	-0.30865900
H(Iso=2)	6.48814700	-0.09876800	-0.77238200
H(Iso=2)	6.33728700	-0.54565600	0.94079400
neomenthol- <i>c1</i> ··(D	MSO-d ₆) ^A		
С	-3.01340200	0.10061100	-0.81425100
С	-2.19634600	-0.71099000	0.20912800
С	-0.86079500	-0.00098900	0.50114000
С	-1.07683200	1.46027100	0.91835900
С	-1.88888900	2.27207800	-0.09718500

С	-3.21477000	1.55759600	-0.38209200
н	-2.75064600	-0.69985400	1,15903400
н	-2 50139600	0 07414300	-1 78240200
н	-3,99041300	-0.36205600	-0.96610000
H	-1.59608500	1.46909700	1.88573000
H	-0.10079600	1.92856300	1.08533100
H	-1.31822700	2.30245500	-1.03278500
н	-3.83350500	1.58387000	0.52510600
н	-3.77286800	2.09995100	-1.15281300
н	-0.36663800	-0.51345300	1,33423600
C	-2.10415500	3,71152600	0.37423100
H	-1.15139100	4.21917500	0.54953100
H	-2.66088500	4.29210800	-0.36689300
H	-2.67118200	3.73613900	1.31056600
C	-2.02533700	-2.19665900	-0.19751700
H	-1.53182700	-2.21384800	-1.17506000
C	-1.14107600	-2.97986200	0.78371700
H	-1.09202300	-4.03264800	0.49330000
Н	-0.11917700	-2.60012600	0.81374600
H	-1.54791500	-2.93763100	1.79979900
С	-3.37736500	-2.91332900	-0.33789300
Н	-4.00516700	-2.47757700	-1.11611900
Н	-3.22623700	-3.96570700	-0.59227400
Н	-3.93704700	-2.87836800	0.60304400
0	-0.02436400	-0.09576000	-0.65932800
Н	0.87966600	0.18963600	-0.41502600
С	4.68974800	-0.29634800	1.31492500
H(Iso=2)	4.06214800	-0.63490000	2.13716800
H(Iso=2)	5.54345100	-0.96349800	1.19729100
H(Iso=2)	5.00962400	0.73343500	1.46992500
С	4.88289500	0.30526200	-1.35650800
H(Iso=2)	5.73201900	-0.37482000	-1.41999200
H(Iso=2)	4.38371400	0.37005900	-2.32147600
H(Iso=2)	5.19011600	1.29187000	-1.01166900
0	2.59037200	0.68052200	-0.02635000
S	3.67516100	-0.38557000	-0.18888100
neomenthol- <i>c1</i> (E	$\mathbf{OMSO-d}_6)^{\mathrm{T}}$		
С	2.79365600	0.09381400	0.95582400
С	2.12087000	-0.71372000	-0.17038300
С	0.83595800	-0.00203600	-0.63423600
С	1.10630700	1.45995700	-1.01539800
С	1.77626000	2.26875400	0.10132900
C	3.05143900	1.55217800	0.55957500
H 	2.79625700	-0.69825900	-1.03828000
H	2.15601700	0.06369800	1.84602000
H	3.74145000	-0.36982100	1.23566600
H	1.75009100	1.47024100	-1.904/1100
Н	0.16161100	1.92937200	-1.31016100

Н	1.08594200	2.29856600	0.95254900
Н	3.78645500	1.58085000	-0.25618900
Н	3.50113900	2.09161500	1.40005000
Н	0.45494700	-0.51219400	-1.52594500
С	2.05415000	3.70877600	-0.33439800
Н	1.13390000	4.21798100	-0.63444200
Н	2.50751000	4.28731200	0.47557200
Н	2.74122900	3.73444100	-1.18652200
С	1.89886300	-2.20139900	0.20313300
Н	1.27670200	-2.22385000	1.10420400
С	1.15890700	-2.98150900	-0.89327000
Н	1.07320400	-4.03576200	-0.61702100
Н	0.14977300	-2.60376900	-1.06156300
Н	1.70093000	-2.93363700	-1.84385200
С	3.22056600	-2.91681000	0.52365100
Н	3.73482900	-2.48458700	1.38292000
Н	3.03835800	-3.97082500	0.74925600
Н	3.90383900	-2.87571900	-0.33148400
0	-0.14629200	-0.09854700	0.40653900
Н	-1.00676300	0.19839200	0.04854200
С	-4.19562000	0.57027200	1.51608100
H(Iso=2)	-4.19844200	1.65161400	1.63983600
H(Iso=2)	-5.14563900	0.15371100	1.85036100
H(Iso=2)	-3.35811200	0.12115500	2.04852000
С	-3.94016800	-1.56663000	-0.18726900
H(Iso=2)	-4.89499900	-1.93742600	0.18491800
H(Iso=2)	-3.77494800	-1.91705200	-1.20433400
H(Iso=2)	-3.11942500	-1.86439900	0.46394300
0	-2.62330100	0.72788200	-0.65451000
S	-4.02039100	0.24773700	-0.26449500