## Supplementary Material: $CO_2$ Capture, Activation and Dissociation on Ti<sub>2</sub>C Surface and Ti<sub>2</sub>C MXene: Role of Surface Structure

Aswathi Mohan T,1,a) Nishamol Kuriakose,2,b) Krishnakanta Mondal,2,c) and Prasenjit Ghosh3,d)

<sup>1)</sup>Department of Chemistry, Indian Institute of Science

Education and Research (IISER), Pune 411008, Maharashtra,

India

<sup>2)</sup>Dept. of Physics, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411008, India

<sup>3)</sup>Department of Physics, Centre for Energy Science, Indian Institute of

Science Education and Research (IISER), Pune 411008, Maharashtra, India

 $<sup>^{\</sup>rm a)} {\it Electronic}$ mail: aswathi.mohan@students.iiserpune.ac.in

<sup>&</sup>lt;sup>b)</sup>Electronic mail: nishamol.kuriakose1@gmail.com

<sup>&</sup>lt;sup>c)</sup>Electronic mail: krishnakanta1987@gmail.com

<sup>&</sup>lt;sup>d)</sup>Electronic mail: pghosh@iiserpune.ac.in



FIG. S1. k-point convergence plot for  $Ti_2C$  MX ene surface.

TABLE S1. Relative energies of the different magnetic configurations of  $Ti_2C$  MXene.

| Magnetic configuration  | Relative energy (meV/f. u.) |
|-------------------------|-----------------------------|
| Antiferromagnetic (AFM) | 0.00                        |
| Ferromagnetic (FM)      | 33.00                       |
| Non magnetic (NM)       | 142.00                      |

| Configuration $5$ (Fig.    | 6 of the manuscript)   | Configuration $6$ (Fig.    | 6  of the manuscript) |
|----------------------------|------------------------|----------------------------|-----------------------|
| (Fig. 6 of the manuscript) |                        | (Fig. 6 of the manuscript) |                       |
| Magnetic configuration     | Relative energy $(eV)$ | Magnetic configuration     | Relative energy (eV)  |
| AFM                        | 0.00                   | $\operatorname{AFM}$       | 0.00                  |
| $\mathrm{FM}$              | 0.12                   | $\mathrm{FM}$              | 0.23                  |
| NM                         | 0.81                   | NM                         | 0.93                  |

TABLE S2. Relative energies for different magnetic configurations of chemisorbed  $CO_2$  on  $Ti_2C$  MXene.



FIG. S2. k-point convergence plot for  $\rm Ti_2C$  surface.

| surfaces | $E_{mag}$ | $E_{non-mag}$ | $E_{diff}$ |
|----------|-----------|---------------|------------|
| 14       | -0.29     | -0.29         | 0.0        |
| 15       | -0.07     | -0.07         | 0.0        |
| 16       | -0.09     | -0.09         | 0.0        |
| 17       | -0.04     | -0.04         | 0.0        |
| 18       | -4.39     | -4.39         | 0.0        |

TABLE S3. Adsorption energy of  $CO_2$  on magnetic and non-magnetic  $Ti_2C\{100\}$  surfaces. All energies are given in eV.





-3.43 **2b**  -3.07 **2c** 

-2.90

2d

-2.75 **2e** 



-1.75 **2f** 

-1.35

2g



2h



FIG. S3. Geometric variants corresponding to the adsorption of two (geometries **2a-2h**) and three (geometries **3a-3c**) CO<sub>2</sub> molecules on Ti<sub>2</sub>C{100} surface; adsorption energy given in  $eV/CO_2$ .



FIG. S4. Charge transfer plots for structures  $\mathbf{27}$ ,  $\mathbf{28}$ , and  $\mathbf{30}$ .



**2**i



2j



2k

-2.76



3d

-2.89 3e



FIG. S5. Geometric variants corresponding to the adsorption of two (geometries 2i-2k) three (geometries 3d-3j), and four (geometries 4a and 4b) CO<sub>2</sub> molecules on MXene surface; adsorption energy given in  $eV/CO_2$ .



FIG. S6. Charge transfer plots for structures  $\mathbf{31}$ ,  $\mathbf{33}$ , and  $\mathbf{34}$ .