SUPPORTING INFORMATION

Proton Affinities of Pertechnetate (TcO4⁻) and Perrhenate (ReO4⁻)

Jiwen Jian¹, Elumalai Varathan², Thibault Cheisson³, Tian Jian¹, Wayne W. Lukens¹, Rebecca L. Davis², Eric J. Schelter³, Georg Schreckenbach^{2,*}, John K. Gibson^{1,*}

¹Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA

²Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada

³Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA

*Corresponding authors: schrecke@cc.umanitoba.ca; jkgibson@lbl.gov

Complete citations for references 18 and 19.

- Table S1. Bond distances and NBO bond orders of species in reactions (1) and (2).
- Table S2. NPA charges of species in reactions (1) and (2).

Table S3. Calculated frequencies for Tc-O and Re-O vibrational modes.

Table S4. Calculated PAs of TcO₄⁻ and ReO₄⁻ with different functionals.

Table S5. Calculated PAs of TcO_4^- and ReO_4^- with different basis sets.

Figure S1. CID mass spectrum of $[(H_3TriNOx)(H)]^{+}$.

Figure S2a. ESI mass spectrum of solution of H₃TriNOx, TcO₄⁻ and ReO₄⁻.

Figure S2b. Zoomed ESI mass spectrum from solution of H₃TriNOx, TcO₄⁻ and ReO₄⁻.

Figure S3. CID mass spectrum of $(TcO_4^{-})(H^+)(ReO_4^{-})$ from ESI of a solution without H₃TriNOx.

Figure S4. Structures and relative energies of $(H_3TriNOx)[(TcO_4^-)(H^+)(ReO_4^-)]$.

Complete citation for reference 18.

Gaussian 09, Revision **C.01**, Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A., Jr.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N.J.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, Ö.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J. Gaussian, Inc., Wallingford CT, 2009.

Complete citation for reference 19.

ADF 2017, EJ Baerends, T Ziegler, AJ Atkins, J Autschbach, D Bashford, O Baseggio, A Bérces, FM Bickelhaupt, C Bo, PM Boerritger, L Cavallo, C Daul, DP Chong, DV Chulhai, L Deng, RM Dickson, JM Dieterich, DE Ellis, M van Faassen, A Ghysels, A Giammona, SJA van Gisbergen, A Goez, AW Götz, S Gusarov, FE Harris, P van den Hoek, Z Hu, CR Jacob, H Jacobsen, L Jensen, L Joubert, JW Kaminski, G van Kessel, C König, F Kootstra, A Kovalenko, M Krykunov, E van Lenthe, DA McCormack, A Michalak, M Mitoraj, SM Morton, J Neugebauer, VP Nicu, L Noodleman, VP Osinga, S Patchkovskii, M Pavanello, CA Peeples, PHT Philipsen, D Post, CC Pye, H Ramanantoanina, P Ramos, W Ravenek, JI Rodríguez, P Ros, R Rüger, PRT Schipper, D Schlüns, H van Schoot, G Schreckenbach, JS Seldenthuis, M Seth, JG Snijders, M Solà, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, Netherlands Table S1. Bond distances (Å) and NBO bond orders of species in reactions (1) and (2) at the B3LYP/SDD/6-31++G** level of theory.

Species	Bond	Distance	Order	
TcO4 ⁻	Тс—О	1.733	1.596	
	Tc—O	1.696	1.787	
HTcO4	Тс—ОН	1.882	0.907	
	ТсО—Н	0.971	0.707	
ReO4 ⁻	Re—O	1.754	1.584	
HReO4	Re—O	1.719	1.770	
	Re—OH	1.891	0.907	
	ReO—H	0.970	0.696	
	Тс—О	1.708	1.708	
(TcO4 ⁻)(H ⁺)(ReO4 ⁻)	Тс—ОН	1.806	1.157	
	ТсО—Н	1.117	0.430	
	Re—O	1.738	1.659	
	Re—OH	1.796	1.266	
	ReO—H	1.291	0.269	

(TcO4 ⁻)(H+)(ReO4 ⁻)	Тс	c O 4 ⁻	Re	e 0 4 ⁻	H	Г сО 4	HF	ReO4
Atom	Charge	Atom	Charge	Atom	Charge	Atom	Charge	Atom	Charge
Тс	1.348	Тс	1.266	Re	1.688	Тс	1.370	Re	1.786
0	-0.448	0	-0.566	0	-0.672	0	-0.378	0	-0.486
0	-0.455	0	-0.566	0	-0.672	0	-0.378	0	-0.500
0	-0.458	0	-0.566	0	-0.672	0	-0.362	0	-0.500
0	-0.702	0	-0.566	0	-0.672	0	-0.777	0	-0.836
Н	0.533					Н	0.526	Н	0.536
Re	1.753								
0	-0.601								
0	-0.594								
0	-0.601								
0	-0.772								

Table S2. NPA charges of species in reactions (1) and (2) at the B3LYP/SDD/6-31++G** level of theory.

Table S3. Calculated frequencies (cm^{-1}) for Tc-O and Re-O vibrational modes at the B3LYP/SDD/6-31++G** level of theory.

Species	Mode	$\boldsymbol{\nu}_{\mathrm{symm}}$	$oldsymbol{ u}_{\mathrm{asymm}}$	$\boldsymbol{\nu}_{ m sci}$	$\boldsymbol{\nu}_{ m roc}$
TcO4 ⁻	Tc-O	915	906	321	338
HTcO ₄	Tc-O	986	978, 982	343, 351	
ReO ₄ -	Re-O	943	891	323,317	316
HReO ₄	Re-O	963, 966	1001	334, 344	245
$(TcO_{4})(H^{+})(ReO_{4})$	Tc-O	966	954	339	290
	Re-O	962	917, 919	326	298
$({\rm ReO_4}^{-})({\rm H}^{+})({\rm ReO_4}^{-})$	Re-O	968, 975	920, 922, 937, 940	337	297
$(TcO_{4})(H^{+})(TcO_{4})$	Tc-O	941, 962	934, 954	334, 338, 340	307
$(\mathbf{I})[(\mathbf{T}_{2}\mathbf{O}, \cdot)(\mathbf{H}^{+})(\mathbf{P}_{2}\mathbf{O}, \cdot)]$	Tc-O	976	963	347, 340	347
(L)[(1004)(H)(Re04)]	Re-O	967	909, 925	322	304

	B3LYP	B3LYP-D3	PBE0	PBE	CAM-B3LYP	M06-2X
PA[TcO4 ⁻]	306.75	306.72	308.93	306.11	306.67	308.56
PA[ReO4 ⁻]	303.62	303.60	304.64	303.15	302.12	304.06
ΔΡΑ	3.13	3.12	4.29	2.96	4.55	4.50

Table S4. Calculated absolute PA of TcO_4^- and ReO_4^- ions with different functionals (kcal/mol).^a

^aUsing the ADF code (scalar ZORA) with the indicated functional and ZORA-TZP basis sets.

Table S5. Calculated absolute PA of TcO₄⁻ and ReO₄⁻ ions with different basis sets (kcal/mol).

	B3LYP/TZP	B3LYP/TZ2P
PA[TcO4 ⁻]	306.75	307.41
PA[ReO4 ⁻]	303.62	304.59
ΔΡΑ	3.13	2.82

Figure S1. CID mass spectrum of H_4 TriNOx⁺(LH⁺) at a nominal CID voltage of 0.55V. Dominant CID pathways, indicated by arrows, correspond to the ligand bond cleavages indicated in the inset.

Figure S2a. Negative mode ESI mass spectrum of solution of $H_3TriNOx$, NH_4TcO_4 and NH_4ReO_4 (concentration ratio 1:5:5). This is the same solution and conditions as for the separately acquired spectrum in Figure 4. The main peaks are assigned as labeled. Two m/z segments of this spectrum indicated by the red and green bars are shown in Figure S2b with the z-axis magnified ("Zoomed").

Figure S2b. Two m/z segments of the ESI mass spectrum in Figure S2a with the y-axis magnified ("Zoomed"). Peaks corresponding to selected species are identified. The peak at 414.9 m/z corresponds to $({}^{99}\text{TcO}_4^-)(\text{H}^+)({}^{187}\text{ReO}_4^-)$ that was isolated for CID.

Figure S3. CID mass spectrum of $(TcO_4^-)(H^+)(ReO_4^-)$ showing loss of HTcO₄ to yield ReO₄⁻, which is the same result as in Figure 4. For this CID experiment the $(TcO_4^-)(H^+)(ReO_4^-)$ dimer was produced by ESI of a solution of 500 µM each of NH₄TcO₄ and NH₄ReO₄ in ethanol (<10% water) with no TriNOx ligand added. The nominal CID voltage was 0.30 V, which is slightly higher than the 0.25 V employed for the result in Figure 4, demonstrating the qualitative nature of this CID parameter.

conformers at the B3LYP/SDD/6-31G* level of theory.