Supporting Information

On the Nonadiabatic Collisional Quenching of OH(A) by H₂: A Four Coupled Quasi-Diabatic State Description

Christopher L. Malbon^a, Bin Zhao^{b,#}, Hua Guo^b and David R. Yarkony^a

^aDepartment of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA ^bDepartment of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, 87131, USA [#]Present address: Theoretische Chemie Eakultät für Chemie Universität Bielefeld

[#]Present address: Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany

S1. The Basis Monomials

Table SI1 contains the definitions of the elementary functions comprising the basis monomials, $g^{(l)}$. Table SI2 contains the monomials, $g^{(l)}$, used in this work. Columns 2 and 3 report the type of coordinate and the R^{ij} scaling used, respectively. Column 4 reports the atoms defining the coordinate. And column 5 is the values of the parameters C_1 and C_2 . Column 6 is the maximum order of the coordinate basis function.

Scaling Type #	Form	Description
(a) Atom-atom di	istance (denoted Stretch) coordinates (r_{AB}	$= \ R_A - R_B\ _{\mathcal{H}}$
1	$exp[-C_1(r_{AB}-C_2)]$	Morse Function
2	$exp\left[-C_{1}(r_{AB}-C_{2})^{2}\right]$	Gaussian Function
3	$exp[-C_1(r_{AB}-C_2)]/r_{AB}$	Yukawa Function
4	$\tanh\left[\left(r_{AB}-C_{2}\right)/C_{1}\right]$	Hyperbolic Tangent Function
(b) Angle bend (c	denoted Angle) coordinates (θ_{ABC} is the AF	3C angle with atom B on the vertex)
1	$\frac{\cos \theta_{ABC}}{1 + exp[C_1(r_{AB}^2 + r_{BC}^2 + C_2^2)]}$	Distance-scaled Cosine
(c) Out-of-plane $\phi_{ABCD} = (R_B - R_A)$	(denoted OOP) coordinates, where triple p × $(R_C - R_A) \cdot (R_D - R_A)$	product
1	$\frac{C_2 \phi_{ABCD}}{\left(r_{AB} r_{AC} r_{AD} r_{BC} r_{BD} r_{CD}\right)^{C_1}}$	Symmetric with respect to all atoms
2	$\frac{\phi_{ABCD}}{r_{AB}r_{AC}r_{AD}} \bigg\{ \sum_{X = B,C,D} exp \big[-C_1 (r_{AB} - C_2)^2 \big] \bigg\}^{-1}$	Symmetric with respect to B, C, and D
(d) Dot products	(denoted DP) where $\phi_{ABCD} = \frac{R_B - R_A}{r_{AB}} \cdot \frac{R_D - R_A}{r_{CD}}$	R _C
1	$\frac{\phi_{ABCD}}{\sum_{X=A,BY}\sum_{e,D}exp[-C_1(r_{XY}-C_2)^2]}$	

Table SI1. Definitions of elementary functions comprising $g^{(l)}$

2 in any monomial $g^{(i)}$. O = 1, H^a = 2, H^b = 3, and H^c = 4. Index Scaling Parameters Max Order Type Atoms 1 2 Stretch 1.2 2.0 2 1 1 2 2 Stretch 1 1 4 1.2 2.0 3 2 4 2 Stretch 1 1.0 2.0 4 2 3 2 Stretch 1 1.0 2.0 5 3 1 2 1.0 2.0 1 Stretch 3 6 Stretch 1 4 1.0 2.0 1 3 2 4 7 Stretch 1.0 2.0 1 8 Stretch 3 2 3 1.0 2.0 1 9 2 1 3 Angle 1 0.2 3.0 10 Angle 1 2 1 4 0.2 3.0 11 OOP 2 0.2 2.5 1 2 3 4 12 DP 1 1 2 3 4 0.2 3.0 1 4 3 2 0.2 3.0 13 DP 1 14 OOP 1 2 3 4 0.1 3.0 1 4 2 3 1 15 OOP 2 0.1 3.0 16 OOP 2 2 3 4 1 0.1 3.0 2 4 3 17 Angle 0.1 3.0 1 18 Angle 1 2 3 4 0.1 3.0 19 1 4 2 Stretch 4 0.4 2.3 20 4 1 2 0.4 2.3 2 Stretch 2 21 Stretch 4 2 4 0.2 3.2 2 22 2 3 0.2 3.2 Stretch 4 2 23 4 0.2 5.7 Stretch 4 1 2 24 Stretch 4 1 2 0.2 5.7 2 2 3 25 4 1.7 4.8 Stretch 2 4 2 26 Stretch 4 1.7 4.8 27 2 1 3 0.8 4.1 1 Stretch 2 28 1 4 0.8 4.1 1 Stretch

Table SI2. Elementary functions of $g^{(i)}$. Max Order indicates the maximum of function per monomial $g^{(i)}$. Additionally, the sum of the orders of functions 1-10 and 17-18 must not exceed

	R(OH ^a)	R(OH ^b)	R(OH ^c)	R(H ^a H ^b)	R(H ^a H ^c)	R(H ^b H ^c)	HªOH ^b H ^c	R(OH-H ₂)
$Q_{OH + H_2}^{min}(1^2A)$			0.966	0.743				
H ^d (1)			0.966	0.744				
H ^d (2)			0.967	0.743				
H ^d (3)			0.967	0.743				
Ref. 1			0.970	0.741				
$Q_{OH+H_2}^{min}(3^2A)$			1.006	0.743				
H ^d (1)			1.006	0.742				
H ^d (2)			1.006	0.743				
H ^d (3)			1.006	0.743				
Ref. 2			1.009	0.743				
$Q_{OH-H_2}^{min}(1^2A)$	3.300	3.300	0.966	0.744	2.342	2.342	0.01	3.279
H ^d (1)	3.313	3.313	0.967	0.744	2.355	2.355	0.00	3.292
H ^d (2)	3.318	3.330	0.967	0.744	2.367	2.366	0.00	3.303
H ^d (3)	3.318	3.330	0.967	0.744	2.366	2.367	0.00	3.303
Ref. 3	3.330	3.330	0.977	0.744			0.00	3.309
$Q_{OH-H_2}^{min}(3^2A)$	2.214	2.214	1.047	0.774	1.198	1.198	-180.00	2.180
H ^d (1)	2.217	2.217	1.045	0.773	1.203	1.203	180.00	2.183
H ^d (2)	2.234	2.215	1.044	0.773	1.206	1.213	180.00	2.190
H ^d (3)	2.215	2.234	1.044	0.773	1.213	1.206	180.00	2.190
Ref. 3	2.209	2.209	1.059	0.778			0.000	2.174

Table SI3. Entrance channel critical point structures. First line for each species is the *ab initio* results. Distances are in Å. Angles are in degrees.

	<i>V</i> ₁	<i>V</i> ₂	V ₃	V4	V ₅	V ₆	E
$Q_{OH+H_2}^{min}(1^2A)$	4408	3823					-33468
H ^d (1)	4410	3817					-33399
H ^d (2)	4406	3824					-33428
H ^d (3)	4406	3824					-33428
Ref. ¹	4401	3738					
$Q_{OH+H_2}^{min}(3^2A)$	4407	3303					0
H ^d (1)	4423	3294					0
H ^d (2)	4410	3303					-10
H ^d (3)	4410	3303					-10
Ref. 2	4382	3228					
$Q_{OH-H_2}^{min}(1^2A)$	4394	3825	345	135	110	105	-33620
H ^d (1)	4383	3821	367	223	168	54	-33631
H ^d (2)	4397	3817	407	222	143	122	-33630
H ^d (3)	4397	3817	407	222	143	122	-33630
Ref(3)							-33559
$Q_{OH-H_2}^{min}(3^2A)$	4015	2796	1431	758	755	482	-2793
H ^d (1)	3993	2827	1412	292	754	456	-2774
H ^d (2)	3986	2817	1404	747	694	477	-2759
H ^d (3)	3986	2817	1404	747	694	477	-2759
Ref. 3							-2511

Table SI4. Entrance channel: Energies (cm⁻¹) and vibrational frequencies (cm⁻¹). First line for each species is the *ab initio* results.

Table SI5. Valence region minimum energy conical intersections. Energies are in cm^{-1} . First line for each species is the *ab initio* results. Distances are in Å. Angles are in degrees. $||\mathbf{g}||$ and $||\mathbf{h}||$ are in atomic units.

	R(OH ^a)	R(OH ^b)	R(OH ^c)	R(H ^a H ^b)	HªOH ^b	H ¹ OH ² H ³	Ε	g	h
$Q_{HO-H_2}^{mex}(2,3^2A)(C_{2\nu})$	1.517	1.518	0.974	0.846	32.38	180.00	-10317	0.12910	0.10335
H ^d (1)	1.517	1.517	0.974	0.847	32.42	180.00	-10331	0.12989	0.10240
H ^d (2)	1.517	1.517	0.974	0.846	32.38	180.00	-10347	0.12869	0.10281
H ^d (3)	1.517	1.517	0.974	0.846	32.38	180.00	-10347	0.12869	0.10281
Ref. 4	1.514	1.514	0.977	0.841	32.36	180.00	-10448	0.12907	0.1032
$Q_{HO-H_2}^{mex}(2,3^2A)(colinear)$	1.195	2.135	0.962	0.940	0.01	179.01	-15471	0.15553	0.07750
H ^d (1)	1.197	2.137	0.963	0.940	0.00	180.00	-15598	0.15144	0.00001
H ^d (2)	1.210	2.122	0.962	0.930	6.61	180.00	-15598	0.15409	0.02711
H ^d (3)	1.196	2.135	0.963	0.939	0.09	180.00	-15577	0.15552	0.00455
Ref. 4	1.187	2.131	0.962	0.944	0.00	0.00	-15321	0.15580	0.07848
$Q_{HO-H_2}^{mex}(1,2^2A)(C_{2\nu})$	1.503	1.503	0.974	0.855	33.04	-180.00	-10689	0.12192	0.10438
H ^d (1)	1.503	1.503	0.974	0.856	33.08	180.00	-10697	0.12270	0.10391
H ^d (2)	1.503	1.503	0.975	0.854	33.03	180.00	-10710	0.12265	0.10412
H ^d (3)	1.503	1.503	0.975	0.854	33.03	180.00	-10710	0.12265	0.10412

Table I6. Geometric parameters of 2^2A-3^2A crossing seam obtained for fixed $\angle OH^aH^b$ using *ab initio* and $H^d(1)$. Bold values are constrained during optimization. Distances are in Å. Angles are in degrees. Energies are in wavenumbers relative to the OH(A)+H₂ asymptote. $||\mathbf{g}||$ and $||\mathbf{h}||$ are in atomic units.

	R(OH ^a)	R(OH⁵)	R(OH ^c)	R(HªH ^b)	OHªH⁵	HªOH♭H℃	E	g	h
1	1.509	1.527	0.974	0.847	75.00	180.00	-10321	0.12909	0.10329
	1.508	1.527	0.974	0.848	75.00	180.00	-10334	0.12986	0.10236
2	1.473	1.568	0.974	0.850	80.00	180.00	-10410	0.12930	0.10267
	1.473	1.568	0.974	0.852	80.00	180.00	-10418	0.13007	0.10204
3	1.441	1.610	0.974	0.856	85.00	180.00	-10604	0.12992	0.10166
	1.440	1.610	0.974	0.857	85.00	180.00	-10607	0.13071	0.10147
4	1.411	1.654	0.973	0.863	90.00	180.00	-10885	0.13095	0.10027
	1.410	1.654	0.973	0.864	90.00	180.00	-10886	0.13174	0.10071
5	1.384	1.698	0.972	0.871	95.00	180.00	-11232	0.13234	0.09859
	1.383	1.698	0.973	0.871	95.00	180.00	-11236	0.13310	0.09984
6	1.359	1.742	0.972	0.880	100.00	180.00	-11622	0.13404	0.09671
	1.358	1.741	0.972	0.879	100.00	180.00	-11634	0.13472	0.09893
7	1.336	1.785	0.971	0.888	105.00	180.00	-12035	0.13597	0.09473
	1.336	1.784	0.971	0.886	105.00	180.00	-12056	0.13655	0.09794
8	1.316	1.827	0.970	0.895	110.00	180.00	-12454	0.13803	0.09273
	1.315	1.825	0.970	0.893	110.00	180.00	-12481	0.13849	0.09673
9	1.297	1.867	0.969	0.902	115.00	180.00	-12864	0.14014	0.09077
	1.297	1.865	0.969	0.900	115.00	180.00	-12890	0.14048	0.09504
10	1.281	1.905	0.968	0.908	120.00	180.00	-13255	0.14224	0.08888
	1.280	1.903	0.968	0.907	120.00	180.00	-13272	0.14245	0.09261
11	1.266	1.940	0.967	0.914	125.00	180.00	-13619	0.14425	0.08709
	1.265	1.939	0.967	0.913	125.00	180.00	-13621	0.14433	0.08922
12	1.253	1.971	0.966	0.917	130.00	180.00	-13953	0.14615	0.08543
	1.252	1.972	0.966	0.918	130.00	180.00	-13938	0.14608	0.08475
13	1.241	2.003	0.965	0.923	135.00	180.00	-14252	0.14792	0.08392
	1.241	2.003	0.966	0.923	135.00	180.00	-14225	0.14768	0.07917
14	1.231	2.031	0.964	0.927	140.00	180.00	-14516	0.14958	0.08251
	1.231	2.031	0.965	0.928	140.00	180.00	-14484	0.14911	0.07255
15	1.223	2.056	0.964	0.931	145.00	180.00	-14745	0.15122	0.08128
	1.222	2.056	0.965	0.931	145.00	180.00	-14720	0.15038	0.06503
16	1.215	2.077	0.963	0.934	150.00	180.00	-14941	0.15280	0.08023
	1.215	2.077	0.964	0.934	150.00	180.00	-14934	0.15150	0.05677
17	1.209	2.094	0.963	0.936	155.00	180.00	-15106	0.15422	0.07935
	1.209	2.096	0.964	0.937	155.00	180.00	-15124	0.15246	0.04795
18	1.204	2.109	0.963	0.937	160.00	180.00	-15240	0.15536	0.07864
	1.205	2.111	0.964	0.938	160.00	180.00	-15289	0.15328	0.03873
19	1.200	2.120	0.963	0.938	165.00	180.00	-15418	0.15603	0.07810
	1.201	2.123	0.963	0.940	165.00	180.00	-15457	0.15393	0.02923
20	1.197	2.129	0.962	0.939	170.00	180.00	-15415	0.15609	0.07771
	1.199	2.130	0.963	0.940	169.00	180.00	-15507	0.15432	0.02150
21	1.195	2.133	0.962	0.940	175.00	180.00	-15458	0.15575	0.07748
	1.198	2.136	0.963	0.940	174.00	180.00	-15579	0.14923	0.01519

Table SI7. Geometric and conical parameters of the 2 ² A-3 ² A seam. Constrained values are	e in
bold. Distances are in Å. Angles are in degrees. Energies are in wavenumbers relative to	the
OH(A)+H ₂ asymptot	ote.
$\phi = 90 - \cos^{-1} \left[R(OH^c) \cdot \left(R(OH^a) \times R(OH^b) \right) / \left(\ R(OH^c)\ \cdot \ \left(R(OH^a) \times R(OH^b) \right) \ \right) \right].$ $\ \mathbf{g}\ $ and $\ \mathbf{h}\ $ are	in
atomic units.	

	R(OHa)	R(OH ^b)	R(OH ^c)	R(HaHb)	HªOHÞ	ф	F	llall	h
		/((011))		, (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	in on	Υ			
1	1.534	1.534	0.972	0.891	33.77	1.86	-9974	0.11635	0.09322
2	1.533	1.533	0.975	0.896	34.01	2.77	-9692	0.10679	0.08654
3	1.531	1.531	0.978	0.905	34.36	3.66	-9309	0.09774	0.07995
4	1.530	1.530	0.981	0.915	34.81	4.51	-8839	0.09013	0.07420
5	1.530	1.530	0.985	0.929	35.33	5.32	-8301	0.08405	0.06945
6	1.530	1.530	0.989	0.944	35.92	6.08	-7709	0.07927	0.06560
7	1.531	1.531	0.993	0.961	36.56	6.81	-7079	0.07547	0.06250
8	1.536	1.536	1.000	0.999	37.95	8.13	-5750	0.06978	0.05788
9	1.544	1.544	1.005	1.042	39.44	9.28	-4392	0.06537	0.05457
10	1.556	1.556	1.009	1.090	41.01	10.27	-3066	0.06121	0.05192
11	1.572	1.572	1.011	1.142	42.62	11.86	-1813	0.05655	0.04950
12	1 591	1 591	1 011	1 199	44 29	12.47	-654	0 05084	0.04693
	1.001	1.001	1.011	1.100				0.00004	0.01000
13	1.611	1.611	1.011	1.259	45.99	12.99	430	0.04382	0.04374
14	1.628	1.628	1.020	1.314	47.61	13.45	1518	0.03969	0.03652

Table SI8. Geometric and conical parameters of the 1^2A-2^2A seam. Constrained values are in bold. Distances are in Å. Angles are in degrees. Energies are in wavenumbers relative to the OH(A)+H₂ asymptote. ||g|| and ||h|| are in atomic units.

	R(OH ^a)	R(OH⁵)	R(OH⁰)	R(H ^a H ^b)	HªOH⁵	HªOH♭H⁰	E	g	h
1	1.429	1.607	0.972	0.879	32.99	180.00	-10721.94	0.12968	0.10024
	1.429	1.644	0.971	0.876	32.18	180.00	-10719.00	0.13035	0.10036
2	1.482	1.564	0.973	0.856	32.50	180.00	-10380.07	0.12888	0.10256
	1.482	1.563	0.973	0.857	32.54	180.00	-10388.80	0.12962	0.10189
3	1.535	1.497	0.974	0.842	32.23	180.00	-10330.48	0.12942	0.10343
	1.535	1.497	0.974	0.844	32.28	180.00	-10343.30	0.13020	0.10253
4	1.588	1.442	0.975	0.834	31.49	180.00	-10519.55	0.13090	0.10299
	1.588	1.442	0.975	0.835	31.54	180.00	-10523.40	0.13178	0.10261
5	1.640	1.394	0.975	0.830	30.36	180.00	-10879.76	0.13300	0.10180
	1.640	1.393	0.975	0.829	30.36	180.00	-10883.10	0.13407	0.10256

SI9. Linking region saddle point structures. First line for each species is the *ab initio* results. Distances are in Å. Angles are in degrees.

	R(OH ^a)	R(OH ^b)	R(OH ^c)	R(H ^a H ^b)	H₃OH _p	H♭OH℃	HªOH ^b H ^c
$Q_{OH-H_2}^{ts}(2^2A)$	1.885	1.885	0.968	1.667	52.48	90.65	52.48
H ^d (1)	1.907	1.907	0.968	1.693	52.71	92.35	52.76
H ^d (2)	1.884	1.888	0.968	1.668	52.49	90.89	52.49
H ^d (3)	1.888	1.884	0.968	1.668	52.49	90.47	52.49
Ref. 5	1.887	1.887	0.971	1.675			
$Q_{OH-H_2}^{ts}(1^2A)$	2.146	1.348	0.967	0.822	6.61	96.43	-0.04
H ^d (1)	2.145	1.346	0.967	0.823	6.55	96.75	0.00
H ^d (2)	2.137	1.348	0.967	0.821	7.61	97.26	0.00
H ^d (3)	2.145	1.346	0.967	0.823	6.60	96.50	0.00
Ref. 6		1.356	0.970	0.819		96.50	

	<i>v</i> ₁	V ₂	<i>V</i> ₃	<i>V</i> ₄	V ₅	V ₆	E
$Q_{OH-H_2}^{ts}(2^2A)$	3807	681	678	616	314	3085 <i>i</i>	1962
H ^d (1)	3770	1050	676	368	263	2446 <i>i</i>	1841
H ^d (2)	3776	719	687	499	429	3149 <i>i</i>	1946
H ^d (3)	3776	719	687	499	429	3149 <i>i</i>	1946
Ref. 5	3733	963	674	610	326	2973 <i>i</i>	706
$Q_{OH-H_2}^{ts}(1^2A)$	3812	2586	1080	611	455	1221 <i>i</i>	-31199
H ^d (1)	3781	2548	955	709	473	1452 <i>i</i>	-31192
H ^d (2)	3843	2560	858	559	415	1258 <i>i</i>	-31183
H ^d (3)	3817	2611	1085	594	534	1290 <i>i</i>	-31214
Ref. 6	3771	2622	1051	598	501	1192 <i>i</i>	-31462

Table SI10. Linking Region: Energy (cm⁻¹) and vibrational frequencies (cm⁻¹) for Linking Region saddle point structures. First line for each species is the *ab initio* results.

	R(OH ^a)	R(OH ^b)	R(OH ^c)	R(H ^a H ^b)	HªOH ^b	H⁵OH℃	HªOH ^b H ^c
$Q_{OH_3}^{min}(1^2A)$	1.014	1.014	1.016	1.615	105.51	105.57	111.49
H ^d (1)	1.016	1.016	1.015	1.617	105.46	105.67	111.64
Ref. 4	1.025	1.025	1.025	NR	NR	NR	NR
$Q_{0H_3}^{ts}(1^2A)$	1.009	1.009	1.009	1.748	120.00	120.00	180.00
H ^d (1)	1.008	1.008	1.008	1.744	119.85	120.07	180.00
$Q_{H_2^{0-H}}(1^2A)$	0.985	0.985	1.213	1.562	104.95	103.82	109.52
H ^d (1)	0.986	0.986	1.212	1.567	105.23	103.91	108.92
H ^d (2)	0.986	0.985	1.210	1.562	104.55	104.27	109.85
H ^d (3)	0.985	0.986	1.210	1.562	104.87	104.55	109.85
Ref. 4	0.988	0.988	1.225	1.562			
$Q_{OH_3}^{min}(4^2A)$	0.972	0.971	0.972	1.623	113.26	113.26	130.73
H ^d (1)	0.971	0.971	0.971	1.618	112.93	113.37	130.68

Table SI11. Rydberg region minimum and saddle point structures. First line for each species is the *ab initio* results. Distances are in Å. Angles are in degrees.

	V ₁	V ₂	<i>V</i> ₃	V ₄	<i>V</i> ₅	<i>V</i> ₆	E
$Q_{OH_3}^{min}(1^2A)$	2998	2748	2597	1474	1426	979	-32433
H ^d (1)	2941	2525	2495	1480	1457	989	-32468
Ref. 4							-30742
$Q_{OH_3}^{ts}(1^2A)$	2890	2634	2633	1248	1248	787 <i>i</i>	-30670
H ^d (1)	2843	2674	2605	1410	1328	669 <i>i</i>	-30897
$Q_{H_2^{0}-H}(1^2A)$	3446	3380	1580	1016	817	1929 <i>i</i>	-31396
H ^d (1)	3428	3309	1616	1079	825	1896 <i>i</i>	-31483
H ^d (2)	3465	3404	1533	1103	893	1907 <i>i</i>	-31477
H ^d (3)	3465	3404	1533	1103	893	1907 <i>i</i>	-31477
Ref. 4							-29532
$Q_{OH_3}^{min}(4^2A)$	3849	3849	3675	1697	1696	817	-9179
H ^d (1)	3807	3782	3689	1712	1693	771	-9182

Table SI12. Rydberg Region: Electronic energy (cm⁻¹) and vibrational frequencies (cm⁻¹). First line for each species is the *ab initio* results. Distances are in Å. Angles are in degrees.

Table SI13. Rydberg region conical intersection structures, energies (cm⁻¹), and conical parameters (a.u.). No *ab initio* determined results for these structures. Distances are in Å. Angles are in degrees. $\|\mathbf{g}\|$ and $\|\mathbf{h}\|$ are in atomic units.

	R(OHª)	R(OH⁵)	R(OH ^c)	R(HªH⁵)	HªOH♭	H♭OH∊	HªOH♭Hc	E	g	h
$Q_{0H_3}^{mex}(2,3^2A) (C_{3v}) H^d$ (1)	0.988	0.988	0.989	1.633	111.52	111.51	125.37	-14378	0.02919	0.02909
Ref. 7	0.987	0.987	0.987	1.620				-12519	0.03107	0.03107
$Q_{OH_3}^{mex}(2,3^2A) (D_{3h}) H^d$ (1)	0.975	0.975	0.989	1.672	118.08	120.96	180.00	-13493	0.02329	0.00000
Ref. 7	0.973	0.973	0.973	1.686				-11638	0.02451	0.02451

Table SI14. Product channel: structures, vibrational frequencies, and energies. Distances are in Å. Angles are in degrees. Energies are in cm⁻¹.

	R(OH ^a)	R(OH ^b)	HªOH ^b	<i>v</i> ₁	<i>v</i> ₂	<i>v</i> ₃	E
$Q_{H_2O+H}^{min}(1^2A)$	0.958	0.958	104.07	3975	3875	1674	-39010
H ^d (1)	0.957	0.957	103.77	3951	3841	1714	-38989
H ^d (2)	0.957	0.957	104.20	3978	3912	1700	-39036
H ^d (3)	0.957	0.957	104.20	3978	3912	1700	-39036
Ref. 5	0.958	0.958		3912	3831	1669	-38989
Ref. 8	0.959	0.959	104.30	3936	3825	1654	

Table SI15. Geometric parameters for Jahn-Teller minima and saddle points for Rydberg region 2^2 A- 3^2 A C_{3v} MEX. Distances are in Å. Angles are in degrees.

	R(OH ^a)	R(OH ^b)	R(OH ^c)	R(H ^a H ^b)	R(H ^a H ^c)	R(H ^b H ^c)	HaOHp	HaOHc	HbOHc	HaOHpHc
$Q^{JT,min}_{OH_3}(2^2A)$	0.978	0.978	1.019	1.578	1.659	1.659	107.55	112.35	112.35	124.14
$Q^{JT,min}_{OH_3}(2^2A)$	1.019	0.976	0.981	1.657	1.577	1.670	112.24	113.20	107.34	124.99
$Q^{JT,min}_{OH_3}(2^2A)$	0.976	1.019	0.981	1.657	1.670	1.577	112.24	107.34	113.20	124.99
$Q_{OH_3}^{JT,ts}(2^2A)$	1.003	1.003	0.969	1.677	1.610	1.610	113.45	109.51	109.51	122.67
$Q_{OH_3}^{JT,ts}(2^2A)$	0.969	0.999	1.009	1.596	1.680	1.622	108.72	110.10	113.95	122.45
$Q_{OH_3}^{JT,ts}(2^2A)$	0.995	0.969	1.009	1.596	1.622	1.680	108.72	113.95	110.10	122.45

Table SI16. Vibrational frequencies (cm⁻¹) and coordinates (a.u.) in **g-h** plane for Jahn-Teller minima and saddle points for Rydberg region $2^2A-3^2A C_{3v}$ MEX. Energies (cm⁻¹) are relative to the $2^2A-3^2A C_{3v}$ MEX. x and y represent coordinates in the **g-h** plane (in atomic units), where $x = \mathbf{g}/||\mathbf{g}||$ and $y = \mathbf{h}/||\mathbf{h}||$.

	v_1	v_2	<i>v</i> ₃	v_4	v ₅	<i>v</i> ₆	E	x	y y
$Q_{OH}^{JT,min}(2^2A)$									
0113	3597	2698	2504	1606	859	788	-201	0.00196	0.00000
$Q_{OH_{-}}^{JT,min}(2^2A)$									
0.1.3	3632	2771	2581	1657	1280	846	-237	-0.00089	-0.00199
$Q_{OH_{o}}^{JT,min}(2^2A)$									
3	3632	2771	2581	1657	1280	846	-237	-0.00089	0.00199
$Q_{OH_{a}}^{JT,ts}(2^2A)$									
3	3757	2961	2197	1693	811	1614 <i>i</i>	-189	-0.00165	0.00000
$Q_{OH_{a}}^{JT,ts}(2^2A)$									
3	3747	2899	2207	1579	879	1080 <i>i</i>	-193	0.00136	0.00121
$Q_{OH_2}^{JT,ts}(2^2A)$									
3	3747	2899	2207	1579	879	1080 <i>i</i>	-193	0.00135	-0.00118

References

1. Huber, K. P.; Herzberg, G., *Molecular Spectra and Molecular Structure, IV, Constants of Diatomic Molecules*. van Norstrand: Princeton, 1979.

2. Collins, M. A.; Godsi, O.; Liu, S.; Zhang, D. H., An ab initio quasi-diabatic potential energy matrix for $OH(^{2}\Sigma) + H_{2}$. J. Chem. Phys. **2011**, 135, 234307.

3. Hoffman, B. C.; Yarkony, D. R., The role of conical intersections in the nonadiabatic quenching of $OH(A^{2}\Sigma^{+})$ by molecular hydrogen. *J. Chem. Phys.* **2000**, *113*, 10091-10099.

4. Dillon, J.; Yarkony, D. R., Seams of conical intersections relevant to the quenching of $OH(A^{2}\Sigma^{+})$ by collisions with H₂. *J. Phys. Chem. A* **2013**, *117* (32), 7344-7355.

5. Dillon, J.; Yarkony, D. R., On the mechanism for the nonadiabatic reactive quenching of $OH(A^{2}\Sigma^{+})$ by $H_{2}({}^{1}\Sigma_{g}{}^{+})$: The role of the 2²A state. *J. Chem. Phys.* **2013**, *139* (6), 064314.

6. Yang, M.; Zhang, D. H.; Collins, M. A.; Lee, S.-Y., Ab initio potential-energy surface for the reactions $OH + H_2 \rightarrow H_2O + H$. J. Chem. Phys. **2001**, 115, 174-178.

7. Godsi, O.; Evenhuis, C. R.; Collins, M. A., Interpolation of multidimensional diabatic potential energy matrices. *J. Chem. Phys.* **2006**, *125* (10), 104105.

8. Herzberg, G., *Molecular Spectra and Molecular Structure, Vol. 2, Infrared and Raman Spectra of Polyatomic Molecules.* Van Nostrand: Princeton, 1945.