PCCP - Electronic Supplementary Information

2

4

Carbon Dioxide and Propane Nucleation: The Emergence of a Nucleation Barrier

Jan Krohn^{$a\ddagger$}, Martina Lippe^{$a\ddagger$}, Chenxi Li^{ab} and Ruth Signorell^{a*}

- ⁵ [‡]These authors contributed equally to this work
- ⁶ ^aLaboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich,
- 7 Switzerland

⁸ ^bCurrent Address: School of Environmental Science and Engineering, Shanghai Jiaotong Uni-

⁹ versity, Shanghai 200240, China

 10 *Corresponding author: Tel: +41 44 633 46 21, Fax: +41 44 633 13 16, E-mail: rsig-11 norell@ethz.ch

12

13

¹⁴ Formulae for thermodynamic properties

¹⁵ We use the expressions for the density (eq. 1) and the surface tension (eq. 2) of liquid C_3H_8 ¹⁶ and CO_2 given in ref. [1]. The temperature dependence of the vapor pressure of liquid C_3H_8 ¹⁷ (eq. 3) was also taken from [1], that of solid CO_2 (eq. 4) from [2, 3]. The expression for the ¹⁸ second virial coefficients of C_3H_8 and CO_2 (eq. 5) is taken from ref. [4].

$$\frac{\rho(T)}{\text{kg/m}^3} = \frac{A}{B^{1+\left(1-\frac{T/K}{C}\right)^D}}$$
(1)

$$\frac{\sigma(T)}{\mathrm{N/m}} = A \left(1 - \frac{T}{T_{\mathrm{c}}} \right)^B \tag{2}$$

$$\ln \frac{p_{\rm eq,C_3H_8}(T)}{p_{\rm c}} = \frac{T_{\rm c}}{T} \left[A \left(1 - \frac{T}{T_{\rm c}} \right) + B \left(1 - \frac{T}{T_{\rm c}} \right)^{1.5} + C \left(1 - \frac{T}{T_{\rm c}} \right)^3 + D \left(1 - \frac{T}{T_{\rm c}} \right)^6 \right]$$
(3)

$$\frac{p_{\rm eq,CO_2}(T)}{\rm bar} = 10^{A - \frac{B}{T/K - C}}$$
(4)

$$\frac{B_2(T)}{\mathrm{cm}^3/\mathrm{mol}} = A + B\frac{10^4}{T/K} + C\frac{10^5}{(T/K)^2} + D\frac{10^9}{(T/K)^3}$$
(5)

¹⁹ The critical temperatures (T_c) and pressures (p_c) required in (eqs. 2 and 3) are $T_c = 304.3$ K ²⁰ and $p_c = 73.8$ bar for CO₂, and $T_c = 369.9$ K and $p_c = 42.5$ bar for C₃H₈ [1]. All the other ²¹ parameters for the above formulae are collected in Table S1. We note the rather high uncertainty ²² of the extrapolation of physical properties to very low temperatures, already discussed in [5].

substance	equation	А	В	\mathbf{C}	D
$\rm CO_2$	(1)	0.7159007	0.02087	310.668	0.07579
$\mathrm{C}_{3}\mathrm{H}_{8}$	(1)	0.8485280	0.03267	388.531	0.10439
CO_2	(2)	0.08167	1.27339	-	-
C_3H_8	(2)	0.05094	1.22051	-	-
$\mathrm{C}_{3}\mathrm{H}_{8}$	(3)	-6.71791	1.33932	-2.23017	-1.24990
$\rm CO_2$	(4)	6.81228	1301.679	3.494	-
$\rm CO_2$	(5)	57.40	-3.8829	4.2899	-1.4661
C_3H_8	(5)	109.71	-8.4673	-81.215	-3.4382

Table S1: Parameters for the density (eq. 1) and surface tension (eq. 2) of liquid CO_2 and C_3H_8 , for the vapor pressure of liquid C_3H_8 (eq. 3) and solid CO_2 (eq. 4), and for the second virial coefficient (eq. 5) of CO_2 and C_3H_8 . The formulae and parameters are taken from refs. [1], [2, 3] and [4].

$_{23}$ Vapor pressure for CO₂ and C₃H₈

The vapor pressure of CO_2 given by the Wagner formula from [1] for the gas-liquid interface 24 (eq.3) shows some lack of agreement with measurements performed by Giauque and Egan [3] 25 (see zoom in in Fig. S1). Based on these measurements Azreg-Ainou [6] (green squares in 26 Fig. S1a) theoretically predicted the vapor pressure at even lower temperatures. Since the 27 results demonstrate the validity of the Antoine equation from NIST [2] at lower temperatures 28 (eq.3), we use it to calculate the vapor pressure of CO_2 at the gas-solid interface. For the vapor 29 pressure of liquid C_3H_8 the situation is reversed: the Wagner formula from [1] (eq.3) agrees well 30 with experimental data [7, 8] and theoretical predictions [9] (see zoom in in Fig. S1b), while 31 the Antoine formula (eq.4) shows disagreement with experiments around 90 K. Consequently 32 we decided to use the Wagner formula from [1] (eq.3) for the vapor pressure of C_3H_8 . 33

Figure S1: a) Vapor pressure of CO_2 as a function of temperature using the Wagner equation for the gas-liquid interface from [1] (eq.3, red trace) and using the Antoine equation for the gas-solid interface from [2] (eq.4, black trace). Experimental points by Giauque and Egan [3] and predictions by Azreg-Ainou [6] are shown as blue cirles and green squares, respectively. b) Vapor pressure of C_3H_8 as a function of the temperature using the Wagner equation from [1] (eq.3, red trace) and the Antoine equation from NIST [2] (eq.4, black trace), both for the gas-liquid interface. Experimental data points from Perkins et al. [7] and Kemp and Egan [8], and predictions from Salerno et al. [9] are shown as blue squares, pink triangles and green circles, respectively.

$_{34}$ Mass spectra for C_3H_8 nucleation

Figure S2: Mass spectra of C_3H_8 given in number of C_3H_8 molecules per cluster *n* for 0.035% and 0.26% concentration. The Figure is analogous to Fig. 2 for CO₂ in the main part. The signal marked in the range of $n \sim 20$ -30 corresponds to uncompensated background signal.

³⁵ Complete data for the number concentrations as a function of the

 $_{36}$ time

Figure S3: Time evolution of the total number concentrations of CO_2 clusters. a) Dependence on CO_2 concentration (50, 10, 3.3, 1.1 and 0.12%). b) Dependence on C_3H_8 concentration (0.26 and 0.035%). c) Dependence on the total pressure (22.5, 30 and 37 Pa). This Figure is analogous to Fig. 3, Fig. 4 and Fig. 7, respectively, in the main text, where only the points used for the linear fits are shown.

$_{37}$ Kinetic model for C_3H_8 and CO_2 data

As discussed in the main text, we construct a net forward rate constant $k_{1j,\text{net}}$ that combines the contribution of evaporation and association. The evolution of the monomer number concentration N_1 is given by:

$$\frac{\mathrm{d}N_1}{\mathrm{d}t} = -N_1 \sum_{j=1}^{\infty} (1+\delta_{1j}) k_{1j,\mathrm{net}} N_j \tag{6}$$

⁴¹ With δ_{1j} being the Kronecker delta and N_j being the number concentration of cluster j. The ⁴² temporal change of the concentration of the clusters with size j > 1 is given by:

$$\frac{\mathrm{d}N_j}{\mathrm{d}t} = (k_{1j-1,\mathrm{net}}N_{j-1} - k_{1j,\mathrm{net}}N_j)N_1 \tag{7}$$

Eq. 7 only accounts for cluster growth via the addition of a monomer, since coagulation between different clusters is negligible under our conditions [10]. We used eq. 4 in the main text to determine the net forward rates $k_{1j,net}$. We used the model of eq. 6 and 7 to calculate the cluster size distribution (red in Fig. S4 and S5) and adjusted $k_{1j,net}$ by visual inspection to match the experimental cluster size distribution (black in Fig. S4 and S5). Examples for CO₂ and C₃H₈ are shown in the following.

Figure S4: Concentration evolution of the dimer and the 8 or 12-mer as a function of the nucleation time for C_3H_8 . The experimental data points are shown as black squares and the simulated data is shown as red dots. The uncertainty of a factor of 2 is indicated by error bars.

Figure S5: Concentration evolution of the dimer and the 12-mer as a function of the nucleation time for CO_2 . The experimental data points are shown as black squares and the simulated data is shown as red dots. The uncertainty of a factor of two is indicated by error bars.

⁴⁹ Enhancement model

50 Force Field model

The interaction potential between a cluster and one approaching monomer unit is modeled with a Transferable Potentials for Phase Equilibria (TraPPE) force-field (FF). The FF parameters are given in Table S2 [11, 12].

fragment	σ	ϵ	q
С	$2.80{\rm \AA}$	$2.3267 \cdot 10^{-3} \mathrm{eV}$	+0.70e
Ο	$3.05{ m \AA}$	$6.8077 \cdot 10^{-3} \mathrm{eV}$	-0.35 e
CH_3	$3.75{ m \AA}$	$8.4450 \cdot 10^{-3} \mathrm{eV}$	0
CH_2	$3.95{ m \AA}$	$3.9640 \cdot 10^{-3} \mathrm{eV}$	0

Table S2: Force field parameters [11, 12].

Parameters for interactions between different fragments are calculated using the Lorentz Berthelot combining rules:

$$\sigma_{ij} = \frac{\sigma_{ii} + \sigma_{jj}}{2}, \ \epsilon_{ij} = \sqrt{\epsilon_{ii}\epsilon_{jj}}$$
(8)

The potential between a cluster and monomer for a certain center-of-mass distance (R) and orientation (Ω) is calculated by summing up all the pair-potential contributions between a

fragment in the cluster (i) and one in the monomer (j):

$$V(R,\Omega) = \sum_{i} \sum_{j} 4\epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{R_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{R_{ij}} \right)^{6} \right] + \frac{1}{4\pi\epsilon_0} \frac{q_i q_j}{R_{ij}}$$
(9)

⁵⁹ R_{ij} is the center-of-mass distance between the fragments. As input, the structure of the cluster ⁶⁰ is necessary. The structures of $(CO_2)_n$ clusters with *n* molecules have been calculated in our ⁶¹ previous publication [13] and we use them here as input for the enhancement model. For ⁶² propane only the monomer-monomer potential was evaluated. The fragments (CH₂, CH₃) ⁶³ in the propane monomer have a fixed bond length of 1.54 Å and a bond angle of 114° [12]. ⁶⁴ We now introduce the orientationally averaged effective potential $V_{\text{eff}}(R)$, as a function of the ⁶⁵ intermolecular distance R [14]

$$V_{\rm eff}(R) = \langle V(R,\Omega) \rangle_{\Omega} + \frac{E_{\rm T} b^2}{\vec{R}^2}$$
(10)

⁶⁶ b is the impact parameter, $E_{\rm T}$ is the relative translational energy and V(R) is the orientationally ⁶⁷ averaged TraPPE (eq.9)

$$V(R) = \langle V(R,\Omega) \rangle_{\Omega} \tag{11}$$

Let R_{max} be the intermolecular distance at which $V_{\text{eff}}(R)$ is maximal.

$$\frac{\mathrm{d}}{\mathrm{d}R} \left(V(R) + \frac{E_{\mathrm{T}}b^2}{R_{\mathrm{max}}^2} \right)_{R=R_{\mathrm{max}}} = 0 \tag{12}$$

⁶⁹ For a collision to take place $E_{\rm T}$ must exceed $V_{\rm eff}(R_{\rm max})$, so that the following conditions deter-⁷⁰ mines the maximum impact parameter $b_{\rm max}$ for which collision is possible:

$$E_{\rm T} = V(R_{\rm max}) + \frac{E_{\rm T} b_{\rm max}^2}{R_{\rm max}}$$
(13)

 $_{^{71}}\,$ Solving eq.13 for $b_{\rm max}$ and assuming a Maxwell distribution for the translational energy $E_{\rm T}$

$$\chi(E_{\rm T}) = 2\left(\frac{1}{k_{\rm B}T}\right)^{3/2} \sqrt{\frac{E_{\rm T}}{\pi}} \exp\left(-\frac{E_{\rm T}}{k_{\rm B}T}\right)$$
(14)

⁷² yields the monomer-cluster association rate constants $k_{1j,\text{inter}}$:

$$k_{1j,\text{inter}} = \int_0^\infty \sqrt{\frac{2E_{\text{T}}}{m}} \pi b_{\text{max}}^2 \chi(E_{\text{T}}) dE_{\text{T}}$$
(15)

⁷³ Finally, the theoretical enhancement factor η_{calc} can be determined with eq. 9 in the main text.

74 ΔG_i^* for small CO₂ clusters as a function of T

The values of reduced ΔG_j^* from the DFT calculations that were used for determining J_{QM} re given below in Table S3.

j	$31.2\mathrm{K}$	$44.4\mathrm{K}$	$49.3\mathrm{K}$	$56.6\mathrm{K}$	$62.9\mathrm{K}$
2	80.77	52.12	45.77	38.50	33.68
3	148.78	96.38	84.82	71.64	62.91
4	200.87	130.23	114.76	97.16	85.53
5	253.64	165.09	145.82	123.95	109.54
6	302.85	196.67	173.64	147.52	130.34
7	343.64	223.33	197.38	168.07	148.81
8	388.88	252.31	222.94	189.76	167.99
9	434.24	281.39	248.57	211.55	187.26
10	486.14	315.23	278.56	237.20	210.08
11	522.52	338.40	299.01	254.65	225.59
12	558.78	360.68	318.38	270.76	239.58

Table S3: $\Delta G_i^* (k_{\rm B}T)^{-1}$ for CO₂ cluster sizes up to j = 12

Fig. S6 shows ΔG_j , the free energy of formation at the experimental supersaturation (NOT at S = 1, therefore without asterisk). This exemplifies the emergence of a nucleation barrier with increasing flow temperature. Note that the calculations still predict a small energy barrier for the coldest temperature; however, this barrier vanishes with a variation of ΔG_j by a few percent. Therefore, it lies within the uncertainty of the calculations as discussed in the next section.

Figure S6: $\Delta G_j(k_{\rm B}T)^{-1}$ from DFT calculations for the five experimental temperatures as a function of cluster size j.

⁸³ Sensitivity analysis of ΔG_j^* and $J_{\rm QM}$

Lemke and Seward [15] compared different DFT calculations with different functionals and basis sets with CCSD(T) level calculations and showed that M06-2X is a good functional to describe the interactions in $(CO_2)_n$ clusters. However, the calculations do have limitations which leads to a small error in ΔG_j^* . $J_{\rm QM}$ uses the calculated ΔG_j^* values as input, see eq. 15 in the main text. As ΔG_j^* is in the exponent of the formula, already minor errors on ΔG_j^* lead to large errors in $J_{\rm QM}$. In Table S4, we assume an uncertainty of 5% on ΔG_j^* and show the effect on $J_{\rm QM}$.

	$31.2\mathrm{K}$	$44.4\mathrm{K}$	$49.3\mathrm{K}$	$56.6\mathrm{K}$	$62.9\mathrm{K}$
$95\% \Delta G_j$ $100\% \Delta G_j$ $105\% \Delta G_j$	$4.1 \cdot 10^{17} 4.7 \cdot 10^{16} 9.1 \cdot 10^{14}$	$5.9 \cdot 10^{17}$ $3.3 \cdot 10^{16}$ $7.5 \cdot 10^{14}$	$8.6 \cdot 10^{17} 3.5 \cdot 10^{16} 6.8 \cdot 10^{14}$	$7.6 \cdot 10^{17} 2.6 \cdot 10^{16} 7.4 \cdot 10^{14}$	$ \begin{array}{r} 1.2 \cdot 10^{19} \\ 5.4 \cdot 10^{17} \\ 2.1 \cdot 10^{16} \end{array} $

Table S4: Nucleation rate $J_{\rm QM}$ for variations of ΔG_i^* by $\pm 5\%$.

The nucleation rate $J_{\rm QM}$ can change by up to two orders of magnitude with a minor change in ΔG_j^* . At high temperatures $J_{\rm QM}$ is more sensitive to an increase of ΔG_j^* (+5%), while at lower temperatures it is more sensitive to a decrease in ΔG_j^* (-5%). These variations can only give an estimate for some of the uncertainties affecting $J_{\rm QM}$. Additional uncertainties arise from the calculated structure of the clusters and from the calculated hard sphere collision rates. However, these contributions are difficult to quantify. As a rough estimate, we quote an uncertainty of \pm two orders of magnitude for the values we determine for $J_{\rm QM}$.

Figure S7: Ratio of $J_{\rm QM}$ to $J_{\rm HS}$ as a function of temperature for the five experimental partial pressures of CO₂.

As mentioned in section 4.4 in the main text, $J_{\rm QM}$ quickly approaches $J_{\rm HS}$ below a certain temperature. This transition is shown in Fig. S7 for the five partial pressures of CO₂ from the experiment. The red shaded area indicates the uncertainty resulting from a variation of ΔG_j^* by 5% as discussed above. At a pressure of $p_{\rm F} = 0.04$ Pa $J_{\rm QM}$ reaches 90% of the hard sphere limit $J_{\rm HS}$ at a temperature of 25.8 K. Upon variations of ΔG_j^* by 5% this temperature varies from 20.1 K to 30.8 K, the latter lying close to the experimental value of 31.2 K.

$_{104}$ Coordinates for CO₂ clusters from DFT calculations

Here, the structures calculated in [13] were used as input parameters and then further refined with a larger basis set (aug-cc-pVTZ). This was done in order to improve the accuracy of ΔG_j^* for the calculation of J_{QM} . The changes in structure of the $(\text{CO}_2)_j$ clusters are minor. The coordinates of the CO₂ clusters are given in the following.

atom	Х	У	Z
\mathbf{C}	0.00000	0.00000	0.00000
Ο	0.00000	0.00000	1.15531
0	0.00000	0.00000	-1.15531

Table S5: CO_2 monomer structure

Table S6: $(CO_2)_2$ structure

atom	Х	У	Z
\mathbf{C}	-1.67003	-0.28355	0.00002
Ο	-2.41823	0.59418	-0.00078
Ο	-0.92491	-1.16935	0.00079
\mathbf{C}	1.67003	0.28353	-0.00001
Ο	2.41757	-0.59474	-0.00080
0	0.92558	1.16992	0.00078

Table S7: $(CO_2)_3$ structure

atom	х	У	Z
С	-0.54585	2.16815	0.00060
Ο	0.50387	1.68123	-0.00018
Ο	-1.58319	2.67141	0.00136
\mathbf{C}	2.15099	-0.61133	0.00085
Ο	3.10463	0.03678	-0.00286
Ο	1.20574	-1.27891	0.00380
\mathbf{C}	-1.60543	-1.55662	-0.00142
Ο	-1.70896	-0.40410	-0.00279
Ο	-1.52187	-2.70655	0.00064

atom	х	У	Z
С	1.03106	2.10031	0.06586
Ο	-0.05099	1.68917	0.12385
Ο	2.09765	2.53113	0.01502
\mathbf{C}	-0.77479	-0.52368	1.80341
Ο	-1.89444	-0.24288	1.77588
Ο	0.34552	-0.80604	1.84108
\mathbf{C}	-1.89323	-0.04948	-1.22811
Ο	-2.68044	0.77195	-1.40588
Ο	-1.10655	-0.88392	-1.06104
\mathbf{C}	1.63571	-1.52864	-0.63964
Ο	1.37854	-2.64328	-0.49624
0	1.91165	-0.41502	-0.79381

Table S8: $(CO_2)_4$ structure

Table S9: $(CO_2)_5$ structure

atom x y z C 0.02776 2.17861 -0.4357 O -0.64957 2.81543 -1.1144 O 0.72977 1.55547 0.2449 C -0.76974 -1.39108 -1.4544 O -0.87370 -0.23869 -1.5300	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
O -0.64957 2.81543 -1.114 O 0.72977 1.55547 0.2449 C -0.76974 -1.39108 -1.454 O -0.87370 -0.23869 -1.530	25
O 0.72977 1.55547 0.2449 C -0.76974 -1.39108 -1.454 O -0.87370 -0.23869 -1.530	07
C -0.76974 -1.39108 -1.454 O -0.87370 -0.23869 -1.530	93
0 -0.87370 -0.23869 -1.530	96
0 0.01010 0.20000 1.000	63
O -0.67354 -2.53658 -1.395	99
C 0.64654 -0.77392 1.7958	39
O -0.38776 -1.06656 1.3676	59
O 1.67627 -0.49680 2.2356	66
C -2.75919 0.21698 0.6119)1
O -2.30212 1.22843 0.9357	70
O -3.22645 -0.78895 0.2914	14
C 2.85275 -0.23028 -0.513	15
O 3.68625 0.54173 -0.325	18
O 2.02225 -1.01373 -0.712	88

atom	х	У	Z
\mathbf{C}	-1.43716	2.27067	-0.07348
Ο	-1.59082	1.26547	0.48318
Ο	-1.30221	3.27929	-0.61159
\mathbf{C}	-2.27339	-1.43542	0.07750
Ο	-1.26996	-1.59133	-0.48185
Ο	-3.28027	-1.29852	0.61837
\mathbf{C}	-0.00220	0.00530	-2.40629
Ο	0.90618	-0.70828	-2.42094
Ο	-0.91078	0.71877	-2.41564
\mathbf{C}	2.27287	1.43729	0.07857
Ο	1.26807	1.59375	-0.47808
Ο	3.28109	1.29977	0.61674
\mathbf{C}	0.00293	-0.00594	2.40663
Ο	-0.71005	-0.91487	2.41659
Ο	0.71592	0.90290	2.42054
С	1.43703	-2.27168	-0.08312
Ο	1.30063	-3.27900	-0.62336
Ο	1.59215	-1.26813	0.47619

Table S10: $(CO_2)_6$ structure

atom	Х	У	Z
\mathbf{C}	-2.90904	0.97595	-0.08202
Ο	-2.27688	0.66574	0.84104
Ο	-3.54651	1.29564	-0.98417
\mathbf{C}	1.72951	-2.45925	-0.14967
Ο	1.40853	-2.28763	-1.24711
Ο	2.04683	-2.64205	0.94530
\mathbf{C}	-0.12324	2.74866	0.51459
Ο	-0.45524	2.62085	-0.58702
Ο	0.18543	2.88138	1.61819
\mathbf{C}	-2.09700	-2.17391	0.08985
Ο	-1.06893	-2.36947	0.58340
Ο	-3.12900	-1.99016	-0.39113
\mathbf{C}	3.05341	1.03567	-0.29322
Ο	3.46559	-0.03894	-0.39013
Ο	2.65782	2.11598	-0.18451
С	0.05936	0.11577	-1.94833
Ο	1.09054	0.54452	-2.23355
Ο	-0.98291	-0.31021	-1.67924
\mathbf{C}	0.29341	-0.24715	1.86090
Ο	0.70959	0.03767	0.81371
Ο	-0.10968	-0.52013	2.90115

Table S11: $(CO_2)_7$ structure

atom	х	У	Z
С	-1.04417	2.67578	-0.57812
Ο	-1.64282	2.52429	0.40117
Ο	-0.46777	2.82921	-1.56544
С	3.96760	-0.16078	-1.04561
Ο	3.07541	0.45950	-1.44795
Ο	4.86704	-0.76402	-0.65284
\mathbf{C}	-3.52826	0.41550	-0.65014
Ο	-4.44684	0.60309	0.01628
Ο	-2.61084	0.23635	-1.33864
\mathbf{C}	-1.10059	0.16711	2.02850
Ο	-1.93258	-0.45612	1.51957
Ο	-0.28179	0.78865	2.55015
\mathbf{C}	1.46893	-2.03157	0.94614
Ο	2.12829	-2.11739	0.00042
Ο	0.81136	-1.95902	1.89223
\mathbf{C}	0.29689	-0.14856	-1.49419
Ο	0.31148	-0.47573	-2.59447
Ο	0.27497	0.18402	-0.38044
\mathbf{C}	-2.11367	-2.51641	-0.39185
Ο	-0.96817	-2.51443	-0.55532
Ο	-3.25701	-2.53163	-0.24040
\mathbf{C}	2.05679	1.59397	1.19407
Ο	2.60873	0.62814	1.51314
Ο	1.52791	2.56879	0.87594

Table S12: $(CO_2)_8$ structure

atom	х	У	Z
\mathbf{C}	0.02722	-0.43071	-1.36272
Ο	-0.00418	-0.28239	-0.21150
Ο	0.06341	-0.59051	-2.50019
\mathbf{C}	3.34197	-1.81399	-0.73386
Ο	3.88507	-2.78897	-0.45426
Ο	2.81115	-0.82274	-1.01985
\mathbf{C}	-3.19790	-1.86009	-0.86804
Ο	-4.27988	-1.46957	-0.78731
Ο	-2.11803	-2.26692	-0.95846
\mathbf{C}	-0.03543	3.24220	0.63051
Ο	-0.93049	2.50919	0.59992
Ο	0.84319	3.98853	0.66166
\mathbf{C}	-1.56873	0.03281	2.01504
Ο	-2.51198	-0.16622	1.37715
Ο	-0.64136	0.23744	2.67107
\mathbf{C}	-3.19173	1.48091	-0.89021
Ο	-3.92324	2.13173	-0.28386
Ο	-2.46327	0.83347	-1.51732
\mathbf{C}	0.08204	-2.89994	0.78638
Ο	-0.62849	-2.69423	1.67286
Ο	0.79277	-3.12096	-0.09847
\mathbf{C}	2.58874	2.11505	-1.22263
Ο	3.69945	2.24960	-0.94699
Ο	1.47461	1.98448	-1.51217
\mathbf{C}	1.95058	0.13306	1.65043
Ο	1.90560	1.26449	1.42060
0	2.02806	-0.99592	1.88345

Table S13: $(CO_2)_9$ structure

atom	Х	У	\mathbf{Z}
С	3.33130	1.08900	-0.04573
Ο	2.76904	0.52813	-0.88953
Ο	3.90549	1.65210	0.77833
\mathbf{C}	0.04453	-0.03982	-1.18333
Ο	0.09841	0.41638	-2.23895
Ο	-0.01869	-0.50286	-0.12238
\mathbf{C}	0.57002	3.34023	-1.73158
Ο	1.17946	3.03249	-0.79538
Ο	-0.02600	3.66227	-2.66287
\mathbf{C}	-0.41565	-3.26095	-0.23790
Ο	-1.13387	-3.05500	-1.12001
Ο	0.29973	-3.48292	0.64081
\mathbf{C}	-3.52327	-1.46821	-1.18467
Ο	-2.90547	-0.49324	-1.06511
Ο	-4.15323	-2.42325	-1.30467
\mathbf{C}	1.44931	-1.27294	2.10302
Ο	2.41167	-1.27087	1.46286
Ο	0.50157	-1.28249	2.76197
\mathbf{C}	-2.68658	2.15568	-0.09416
Ο	-3.77310	2.20270	0.28426
Ο	-1.59621	2.11743	-0.48370
\mathbf{C}	2.99622	-2.20709	-1.30820
Ο	4.11177	-2.18802	-1.02015
Ο	1.88009	-2.24398	-1.61480
\mathbf{C}	-2.04770	-0.70477	1.77887
Ο	-1.91275	0.42081	2.00343
0	-2.21683	-1.82565	1.55639
\mathbf{C}	0.28338	2.36692	1.90693
Ο	1.03574	1.49676	1.78615
Ο	-0.45798	3.24066	2.04090

Table S14: $(CO_2)_{10}$ structure

 atom х у \mathbf{Z} С 1.49375-3.07304-0.46319Ο 1.18905-3.502560.56423Ο 1.80443-2.65765-1.49639С -3.423880.17789-2.24699Ο -3.530031.31427 -2.06655-3.33884Ο -0.95801-2.43771С -1.583873.11632-0.87938Ο -1.394063.57895-1.91661Ο -1.774562.669080.17281С 0.107972.119752.355180 -0.409061.084802.33028Ο 0.618972.396223.15266С -0.08535-0.05405-0.87024Ο -0.633010.37735-1.78866Ο 0.47176 -0.484170.04829 С -2.953140.184691.40663Ο -3.355660.547552.42125Ο -2.56871-0.184040.37662С 3.54630-0.47830-2.10603Ο 2.754450.28731-1.74096Ο 4.34392-1.22128-2.47317С -2.29019-2.84631-0.44513Ο -3.31172-3.072270.03765Ο -1.26225-2.63790-0.93620С 2.96506-0.197231.21178Ο 2.642350.84172 1.60162Ο 3.31790 -1.222790.81388С 2.213472.75644-0.471743.31918Ο 3.07735 -0.46705Ο 1.09843 2.44221 -0.48301С 0.01111-1.710192.51071Ο 1.09044 -1.474242.84601Ο -1.07388-1.955312.19627

Table S15: $(CO_2)_{11}$ structure

atom	Х	У	Z
С	2.87659	-1.01736	1.43582
Ο	1.94771	-0.32320	1.47382
Ο	3.80192	-1.69942	1.41305
\mathbf{C}	-3.08282	1.12846	-1.86816
Ο	-4.00944	1.74308	-1.56713
Ο	-2.15894	0.50754	-2.18753
\mathbf{C}	-1.29099	-2.15909	-2.56098
Ο	-2.30605	-2.50950	-2.13858
Ο	-0.27915	-1.80921	-2.99897
\mathbf{C}	-2.91756	-1.85925	0.72140
Ο	-2.42116	-2.86414	0.99657
Ο	-3.43263	-0.85802	0.45599
\mathbf{C}	0.03064	0.07061	-0.48671
Ο	0.60478	1.02754	-0.78771
Ο	-0.53131	-0.89411	-0.19492
\mathbf{C}	-2.43353	1.68175	1.61867
Ο	-1.91487	1.70177	0.58102
Ο	-2.95720	1.68193	2.64255
\mathbf{C}	-0.54773	3.66633	-0.94260
Ο	-1.17355	3.38131	-1.86998
Ο	0.07185	3.96985	-0.01560
\mathbf{C}	1.43797	2.34833	1.84613
Ο	0.44383	2.05111	2.35673
Ο	2.44042	2.64474	1.35698
\mathbf{C}	0.36657	-3.44365	0.39095
Ο	0.75178	-3.05265	1.40907
Ο	-0.00469	-3.85057	-0.62277
С	2.51143	-1.40550	-2.20401
Ο	2.83934	-1.00770	-3.23313
Ο	2.18337	-1.80482	-1.16620
\mathbf{C}	-0.18087	-0.87572	3.30085
Ο	0.66733	-1.12240	4.04167
Ο	-1.04460	-0.62636	2.57188
\mathbf{C}	3.23306	1.86223	-1.25108
Ο	2.86412	2.86863	-1.67293
Ο	3.61506	0.84674	-0.84410

Table S16: $(CO_2)_{12}$ structure

References

- [1] Verein deutscher Ingenieure and Gesellschaft Verfahrenstechnik und Chemieingenieurwe sen, *VDI-Wärmeatlas*, Springer Vieweg (2013).
- 112 [2] National Institute of Standards and Technology http://webbook.nist.gov/chemistry/
- ¹¹³ [3] W. F. Giauque and C. J. Egan, J. Chem. Phys., 5, 45-54 (1937).
- [4] J. H. Dymond, K. N. Marsh, R. C. Wilhoit, K. C. Wong, Virial Coefficients of Pure Gases
 and Mixtures. Vol. 21, Springer-Verlag (2002).
- [5] M. Lippe, S. Chakrabarty, J. J. Ferreiro, K. K. Tanaka and Ruth Signorell J. Chem. Phys.,
 149, 244303 (2018).
- ¹¹⁸ [6] M. Azreg-Ainou, Monatsh. Chem., **136**, 2017-2027 (2005).
- [7] R. A. Perkins, J. C. Sancheu Ochoa, J. W. Magee, J. Chem. Eng. Data, 54, 12, 3192-3201
 (2009).
- ¹²¹ [8] J. D. Kemp, C. J. Egan, J. Am. Chem. Soc., **60**, 1521-1525 (1938).
- [9] S. Salerno, M. Cascella, D. May, P. Watson, D. Tassios, Fluid Phase Equilib., 27, 15-34 (1986).
- ¹²⁴ [10] C. Li, M. Lippe, J. Krohn and R. Signorell J. Chem. Phys., **151**, 094305 (2019).
- ¹²⁵ [11] J. J. Potoff and J. I. Siepmann, AIChE J., 47, 1676-1682 (2001).
- ¹²⁶ [12] M. G. Martin and J. I. Siepmann, J. Phys. Chem. B, **102**, 2569-2577 (1998).
- [13] M. Lippe, U. Szczepaniak, G.-H. Hou, S. Chakrabarty, J. J. Ferreiro, E. Chasovskikh and
 R. Signorell, J. Phys. Chem. A, **123**, 2426-2437 (2019).
- [14] R. D. Levine and R. B. Bernstein, Molecular reaction dynamics and chemical reactivity,
 Oxford University Press (1987).
- ¹³¹ [15] K. H. Lemke, T. M. Seward, Chem. Phys. Lett., **573**, 19-23 (2013).