SUPPORTING INFORMATION

First-principles characterization of the singlet excited state manifold in DNA/RNA nucleobases

Vishal K. Jaiswal, ^{a,b} Javier Segarra-Martí, ^{*b,c,d} Marco Marazzi,^{e,f,g,h} Elena Zvereva,^{†e,f,i} Xavier Assfeld,^{e,f} Antonio Monari,^{e,f} Marco Garavelli, ^{*a} and Ivan Rivalta^{*a,b}

- ^{a.} Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy.
- ^{b.} Univ Lyon, Ens de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie UMR 5182, F-69342, Lyon, France.
- ^{c.} Molecular Sciences Research Hub, White City Campus, Imperial College London, 80 Wood Lane, W12 0BZ London, UK.
- ^d Instituto de Ciencia Molecular, Universitat de Valencia, P.O.Box 22085 Valencia, Spain.
- ^{e.} Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France.
- ^{f.} CNRS, Laboratoire de Physique et Chimie Théoriques. Vandoeuvre-lès-Nancy, 54506 France
- ^{g.} Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Ctra, Madrid-Barcelona Km. 33,600, E-28805 Alcala de Henares (Madrid), Spain.
- ^{h.} Chemical Research Institute "Andres M. del Río" (IQAR), Universidad de Alcala, E-28871 Alcala de Henares (Madrid), Spain
- ^{*i*} A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences

*E-mail: j.segarra-marti@imperial.ac.uk; marco.garavelli@unibo.it; i.rivalta@unibo.it

State	RASPT2	B3LYP	B3LYP	CAMB3LYP	CAMB3LYP
(n+1)		6-31G**	6-311++G**	6-31G**	6-311++G**
2 (Lb)	4.94(0.00)	5.56(0.07)	5.38(0.04)	5.77(0.08)	5.59(0.02)
3 (La)	5.18(0.23)	5.28(0.16)	5.09(0.20)	5.64(0.18)	5.44(0.27)
4	6.24(0.15)	-	6.22(0.17)	6.96(0.42)	6.64(0.44)
5	6.37(0.00)	6.49(0.09)	6.26(0.02)	7.21(0.03)	7.29(0.01)
6	6.38(0.35)	$6.58(0.14), 7.00(0.17)^{\#}$	6.66(0.10)	7.36(0.11)	7.07(0.10)
7	6.86(0.43)	7.36(0.13)	7.08(0.17)	7.79(0.16)	7.56(0.15)
8	7.00(0.17)	7.75(0.13)	7.36(0.03)	8.51(0.10)	8.51(0.00)
9	7.39(0.35)	7.61(0.11)	7.46(0.19)	8.22(0.08)	7.97(0.05)
10	7.94(0.09)	8.87(0.04)	8.57(0.00)	9.59(0.01)	9.36(0.03)
11	8.19(0.45)	9.10(0.18)	8.37(0.12)	9.29(0.13)	9.24(0.08)
12	8.53(0.13)	9.27(0.03)	9.13(0.03)		
13	8.83(0.02)				

Table S1: Adenine $S_0 \rightarrow S_n$ vertical transition energies (in eV) and corresponding oscillator strengths in parentheses at various levels of theory.

Table S2: Adenine $L_a \rightarrow S_n$ vertical transition energies (in eV) and corresponding oscillator strengths in parentheses at various levels of theory.

State	RASPT2	B3LYP	B3LYP	CAMB3LYP	CAMB3LYP
(n+1)		6-31G**	6-311++G**	6-31G**	6-311++G**
4	1.06(0.01)	-	1.12(0.03)	1.32(0.01)	1.20(0.00)
5	1.19(0.04)	1.22(0.06)	1.16(0.07)	1.56(0.07)	1.85(0.01)
6	1.20(0.02)	$1.30(0.02), 1.72(0.01)^{\#}$	1.57(0.01)	1.71(0.01)	1.63(0.02)
7	1.68(0.00)	2.08(0.00)	1.99(0.00)	2.14(0.00)	2.12(0.00)
8	1.82(0.01)	2.47(0.01)	2.27(0.01)	2.87(0.02)	3.07(0.00)
9	2.21(0.00)	2.33(0.00)	2.37(0.00)	2.57(0.01)	2.54(0.01)
10	2.76(0.01)	3.60(0.01)	3.48(0.01)	3.94(0.03)	3.92(0.02)
11	3.01(0.02)	3.83(0.00)	3.28(0.00)	3.65(0.01)	3.80(0.00)
12	3.35(0.00)	3.99(0.01)	4.04(0.00)		
13	3.65(0.12)				

Table S3: Adenine $L_b \rightarrow S_n$ vertical transition energies (in eV) and corresponding oscillator strengths in parentheses at various levels of theory.

State	RASPT2	B3LYP	B3LYP	CAMB3LYP	CAMB3LYP
(n+1)		6-31G**	6-311++G**	6-31G**	6-311++G**
4	1.30(0.01)	-	0.83(0.00)	1.20(0.01)	1.05(0.00)
5	1.43(0.00)	0.93(0.00)	0.87(0.00)	1.44(0.01)	1.70(0.01)
6	1.44(0.00)	$1.02(0.00), 1.44(0.00)^{\#}$	1.28(0.01)	1.59(0.01)	1.48(0.01)
7	1.92(0.01)	1.80(0.01)	1.70(0.01)	2.02(0.01)	1.96(0.01)
8	2.06(0.02)	2.19(0.02)	1.98(0.01)	2.75(0.01)	2.92(0.00)
9	2.45(0.03)	2.05(0.00)	2.08(0.03)	2.45(0.02)	2.38(0.00)
10	3.00(0.00)	3.31(0.01)	3.19(0.00)	3.82(0.01)	3.77(0.00)
11	3.25(0.01)	3.54(0.00)	2.99(0.00)	3.53(0.00)	3.64(0.00)
12	3.59(0.05)	3.71(0.03)	3.74(0.03)		
13	3.89(0.02)				

State	RASPT2	B3LYP	B3LYP	CAMB3LYP	CAMB3LYP
(n+1)		6-31G**	6-311++G**	6-31G**	6-311++G**
2 (La)	4.68(0.14)	5.20(0.16)	4.99(0.13)	5.45(0.18)	5.24(0.16)
3 (Lb)	5.20(0.27)	5.52(0.19)	5.24(0.26)	5.94(0.27)	5.63(0.33)
4	6.00(0.03)	6.47(0.00)	$6.11(0.02), 6.17(0.00)^{\#}$	7.01(0.01)	6.59(0.02)
5	6.57(0.26)	7.22(0.29)	-	7.81(0.15)	7.55(0.10)
6	6.77(0.56)	7.35(0.17)	-	7.87(0.25)	7.53(0.13)
7	6.79(0.67)	7.11(0.05)	6.86(0.10)	7.65(0.30)	7.33(0.24)
8	6.90(0.01)	7.56(0.14)	7.22(0.20)	8.06(0.06)	7.84(0.10)
9	7.32(0.02)	7.91(0.10)	7.67(0.10)	8.47(0.07)	8.13(0.03)
10	8.00(0.25)	8.20(0.00)	7.82(0.00)	9.06(0.03)	8.71(0.05)
11	8.04(0.04)	8.70(0.07)	8.27(0.15)	9.17(0.03)	8.82(0.02)
12	8.28(0.01)	8.52(0.02)	8.16(0.04)	9.79(0.06)	
13	8.51(0.06)	9.78(0.03)		10.38(0.03)	
14	8.92(0.08)	10.01(0.14)		10.87(0.00)	

Table S4: Guanine $S_0 \rightarrow S_n$ vertical transition energies (in eV) and corresponding oscillator strengths in parentheses at various levels of theory.

Table S5: Guanine $L_a \rightarrow S_n$ vertical transition energies (in eV) and corresponding oscillator strengths in parentheses at various levels of theory.

State	RASPT2	B3LYP	B3LYP	CAMB3LYP	CAMB3LYP
(n+1)		6-31G**	6-311++G**	6-31G**	6-311++G**
4	1.32(0.01)	1.27(0.02)	$1.11(0.00), 1.17(0.00)^{\#}$	1.57(0.02)	1.34(0.01)
5	1.89(0.01)	2.02(0.01)	-	2.36(0.01)	2.31(0.01)
6	2.09(0.03)	2.15(0.01)	-	2.42(0.02)	2.29(0.02)
7	2.11(0.01)	1.91(0.00)	1.86(0.00)	2.20(0.00)	2.09(0.00)
8	2.22(0.00)	2.36(0.00)	2.23(0.01)	2.62(0.00)	2.59(0.00)
9	2.64(0.03)	2.71(0.04)	2.68(0.04)	3.03(0.06)	2.88(0.02)
10	3.32(0.00)	3.00(0.01)	2.83(0.00)	3.61(0.01)	3.47(0.02)
11	3.36(0.02)	3.50(0.01)	3.27(0.02)	3.73(0.04)	3.58(0.02)
12	3.60(0.06)	3.32(0.01)	3.17(0.00)	4.35(0.00)	-
13	3.83(0.04)	4.58(0.00)	-	4.93(0.00)	-
14	4.24(0.01)	4.81(0.00)	-	5.42(0.05)	-

State	RASPT2	B3LYP	B3LYP	CAMB3LYP	CAMB3LYP
(n+1)		6-31G**	6-311++G**	6-31G**	6-311++G**
4	0.80(0.03)	0.94(0.04)	$0.86(0.03), 0.92(0.03)^{\#}$	1.07(0.05)	0.96(0.07)
5	1.37(0.04)	1.69(0.01)	-	1.87(0.01)	1.92(0.03)
6	1.57(0.00)	1.83(0.01)	-	1.93(0.02)	1.91(0.00)
7	1.59(0.03)	1.58(0.01)	1.61(0.01)	1.71(0.01)	1.70(0.01)
8	1.70(0.01)	2.03(0.01)	1.98(0.02)	2.12(0.02)	2.21(0.01)
9	2.12(0.00)	2.39(0.03)	2.43(0.01)	2.53(0.00)	2.50(0.00)
10	2.80(0.01)	2.67(0.03)	2.58(0.03)	3.12(0.11)	3.08(0.05)
11	2.84(0.07)	3.18(0.00)	3.02(0.00)	3.23(0.00)	3.20(0.03)
12	3.08(0.02)	2.99(0.00)	2.92(0.00)	3.85(0.01)	-
13	3.31(0.00)	4.25(0.00)	-	4.44(0.01)	-
14	3.72(0.03)	4.49(0.01)	-	4.93(0.02)	-

Table S6: Guanine $L_b \rightarrow S_n$ vertical transition energies (in eV) and corresponding oscillator strengths in parentheses at various levels of theory.

suchgens in pareneticses at various levers of theory.									
State	RASPT2	B3LYP	B3LYP	CAMB3LYP	CAMB3LYP				
(n+1)		6-31G**	6-311++G**	6-31G**	6-311++G**				
2	5.20(0.17)	5.41(0.12)	5.22(0.12)	5.70(0.17)	5.47(0.18)				
3	6.18(0.04)	6.09(0.04)	5.97(0.03)	6.78(0.04)	6.63(0.04)				
4	6.55(0.18)	6.85(0.11)	6.53(0.12)	7.29(0.14)	6.89(0.16)				
5	7.39(0.71)	7.89(0.17)	7.52(0.37)	8.16(0.41)	7.88(0.33)				
6	8.42(0.05)	9.27(0.08)	9.13(0.10)	10.01(0.08)	10.03(0.05)				

Table S7: Uracil $S_0 \rightarrow S_n$ vertical transition energies (in eV) and corresponding oscillator strengths in parentheses at various levels of theory.

Table S8: Uracil $S_1 \rightarrow S_n$ vertical transition energies (in eV) and corresponding oscillator strengths in parentheses at various levels of theory.

0					
State	RASPT2	B3LYP	B3LYP	CAMB3LYP	CAMB3LYP
(n+1)		6-31G**	6-311++G**	6-31G**	6-311++G**
4	1.35(0.00)	1.44(0.01)	1.31(0.00)	1.59(0.01)	1.42(0.01)
5	2.19(0.01)	2.39(0.00)	2.30(0.00)	2.46(0.00)	2.40(0.00)
6	3.22(0.08)	2.53(0.02)	3.91(0.02)	4.32(0.05)	4.56(0.00)
7	3.29(0.00)	3.14(0.05)	3.13(0.05)	3.47(0.04)	3.44(0.07)

Table S9: Thymine $S_0 \rightarrow S_n$ vertical transition energies (in eV) and corresponding oscillator strengths in parentheses at various levels of theory.

State	RASPT2	B3LYP	B3LYP	CAMB3LYP	CAMB3LYP
(n+1)		6-31G**	6-311++G**	6-31G**	6-311++G**
2	5.00(0.17)	5.30(0.12)	5.06(0.13)	5.60(0.18)	5.33(0.18)
3	6.20(0.11)	6.36(0.07)	6.08(0.05)	6.90(0.07)	6.70(0.05)
4	6.51(0.17)	6.74(0.14)	6.46(0.12)	7.18(0.18)	6.83(0.20)
5	7.32(0.89)	7.91(0.34)	7.81(0.31)	8.27(0.40)	7.94(0.23)
6	8.06(0.38)	8.27(0.06)	8.06(0.05)	8.92(0.07)	8.70(0.08)

Table S10: Thymine $S_1 \rightarrow S_n$ vertical transition energies (in eV) and corresponding oscillator strengths in parentheses at various levels of theory.

State	RASPT2	B3LYP	B3LYP	CAMB3LYP	CAMB3LYP				
(n+1)		6-31G**	6-311++G**	6-31G**	6-311++G**				
3	1.20(0.01)	0.96(0.01)	1.02(0.01)	1.30(0.01)	1.37(0.01)				
4	1.51(0.00)	1.45(0.00)	1.40(0.01)	1.58(0.01)	1.51(0.01)				
5	2.32(0.00)	2.61(0.00)	2.75(0.00)	2.67(0.00)	2.61(0.00)				
6	3.06(0.02)	2.98(0.09)	3.00(0.12)	3.32(0.10)	3.37(0.12)				

State (n+1)	RASPT2	B3LYP 6-31G**	B3LYP 6-311++G**	CAMB3LYP 6-31G**	CAMB3LYP 6-311++G**
2	4.66(0.05)	4.74(0.13)	5.65(0.03)	5.12(0.05)	5.00(0.106)
3	5.59(0.10)	5.66(0.08)	5.48(0.06)	6.15(0.12)	65.94(0.11)
4	6.46(0.83)	6.88(0.23)	6.34(0.21)	7.16(0.46)	6.70(0.15)
5	6.90(0.30)	7.10(0.38)	6.69(0.33)	7.46(0.21)	6.96(0.11)
6	8.01(0.24)	8.02(0.14)	7.87(0.15)	8.61(0.18)	8.45(0.16)

Table S11: Cytosine $S_0 \rightarrow S_n$ vertical transition energies (in eV) and corresponding oscillator strengths in parentheses at various levels of theory.

Table S12: Cytosine $S_1 \rightarrow S_n$ vertical transition energies (in eV) and corresponding oscillator strengths in parentheses at various levels of theory.

State (n+1)	RASPT2	B3LYP 6-31G**	B3LYP 6-311++G**	CAMB3LYP 6-31G**	CAMB3LYP 6-311++G**
3	0.93(0.01)	0.91(0.01)	0.82(0.01)	1.02(0.01)	0.94(0.01)
4	1.91(0.00)	2.14(0.00)	1.69(0.00)	2.04(0.00)	1.70(0.00)
5	2.24(0.03)	2.36(0.01)	2.03(0.00)	2.34(0.01)	1.96(0.00)
6	3.35(0.09)	3.28(0.05)	3.22(0.05)	3.49(0.06)	3.45(0.08)

ADENINE

Figure S1. Computed ESAs associated to vertical $L_a \rightarrow S_m$ excitations (colored sticks) of adenine in gasphase. Reference theoretical values at RASPT2 (yellow sticks) are compared with B3LYP/6-31G**(red sticks), B3LYP/6-311++G** (blue sticks), CAMB3LYP/6-31G**(violet sticks) and CAMB3LYP/6-311++G** (green sticks) and corresponding convoluted spectra (colored lines). Only $\pi\pi^*$ states are labeled, according to root numbers in the reference RASPT2 computations (Table S2)

Figure S2. Computed ESAs associated to vertical $L_b \rightarrow S_m$ excitations (colored sticks) of adenine in gasphase. Reference theoretical values at RASPT2 (yellow sticks) are compared with B3LYP/6-31G**(red sticks), B3LYP/6-311++G** (blue sticks), CAMB3LYP/6-31G**(violet sticks) and CAMB3LYP/6-311++G** (green sticks) and corresponding convoluted spectra (colored lines). Only $\pi\pi^*$ states are labeled, according to root numbers in the reference RASPT2 computations (Table S3)

GUANINE

Figure S3. Computed spectra associated to vertical $S_0 \rightarrow S_n$ excitations (colored sticks) of guanine in gasphase. Reference theoretical values at RASPT2 (yellow sticks) are compared with B3LYP/6-31G**(black sticks), B3LYP/6-311++G** (blue sticks), CAMB3LYP/6-31G**(violet sticks) and CAMB3LYP/6-311++G** (green sticks). Only $\pi\pi^*$ states are labeled, according to root numbers in the reference RASPT2 computations (Table S4)

Figure S4. Computed ESAs associated to vertical $L_a \rightarrow S_m$ excitations (colored sticks) of guanine in gasphase. Reference theoretical values at RASPT2 (yellow sticks) are compared with B3LYP/6-31G**(red sticks), B3LYP/6-311++G** (blue sticks), CAMB3LYP/6-31G**(violet sticks) and CAMB3LYP/6-311++G** (green sticks) and corresponding convoluted spectra (colored lines). Only $\pi\pi^*$ states are labeled, according to root numbers in the reference RASPT2 computations (Table S5)

Figure S5. Computed ESAs associated to vertical $L_b \rightarrow S_m$ excitations (colored sticks) of guanine in gasphase. Reference theoretical values at RASPT2 (yellow sticks) are compared with B3LYP/6-31G**(red sticks), B3LYP/6-311++G** (blue sticks), CAMB3LYP/6-31G**(violet sticks) and CAMB3LYP/6-311++G** (green sticks) and corresponding convoluted spectra (colored lines). Only $\pi\pi^*$ states are labeled, according to root numbers in the reference RASPT2 computations (Table S6)

URACIL

Figure S6. Computed spectra associated to vertical $S_0 \rightarrow S_n$ excitations (colored sticks) of uracil in gasphase. Reference theoretical values at RASPT2 (yellow sticks) are compared with B3LYP/6-31G**(black sticks), B3LYP/6-311++G** (blue sticks), CAMB3LYP/6-31G**(violet sticks) and CAMB3LYP/6-311++G** (green sticks). Only $\pi\pi^*$ states are labeled, according to root numbers in the reference RASPT2 computations (Table S7)

Figure S7. Computed ESAs associated to vertical $S_1 \rightarrow S_m$ excitations (colored sticks) of uracil in gasphase. Reference theoretical values at RASPT2 (yellow sticks) are compared with B3LYP/6-31G**(red sticks), B3LYP/6-311++G** (blue sticks), CAMB3LYP/6-31G**(violet sticks) and CAMB3LYP/6-311++G** (green sticks) and corresponding convoluted spectra (colored lines). Only $\pi\pi^*$ states are labeled, according to root numbers in the reference RASPT2 computations (Table S8)

THYMIME

Figure S8. Computed spectra associated to vertical $S_0 \rightarrow S_n$ excitations (colored sticks) of thymine in gasphase. Reference theoretical values at RASPT2 (yellow sticks) are compared with B3LYP/6-31G**(black sticks), B3LYP/6-311++G** (blue sticks), CAMB3LYP/6-31G**(violet sticks) and CAMB3LYP/6-311++G** (green sticks). Only $\pi\pi^*$ states are labeled, according to root numbers in the reference RASPT2 computations (Table S9)

Figure S9. Computed ESAs associated to vertical $S_1 \rightarrow S_m$ excitations (colored sticks) of thymine in gasphase. Reference theoretical values at RASPT2 (yellow sticks) are compared with B3LYP/6-31G**(red sticks), B3LYP/6-311++G** (blue sticks), CAMB3LYP/6-31G**(violet sticks) and CAMB3LYP/6-311++G** (green sticks) and corresponding convoluted spectra (colored lines). Only $\pi\pi^*$ states are labeled, according to root numbers in the reference RASPT2 computations (Table S10)

CYTOSINE

Figure S10. Computed spectra associated to vertical $S_0 \rightarrow S_n$ excitations (colored sticks) of cytosine in gasphase. Reference theoretical values at RASPT2 (yellow sticks) are compared with B3LYP/6-31G**(black sticks), B3LYP/6-311++G** (blue sticks), CAMB3LYP/6-31G**(violet sticks) and CAMB3LYP/6-311++G** (green sticks). Only $\pi\pi^*$ states are labeled, according to root numbers in the reference RASPT2 computations (Table S11)

Figure S11. Computed ESAs associated to vertical $S_1 \rightarrow S_m$ excitations (colored sticks) of cytosine in gasphase. Reference theoretical values at RASPT2 (yellow sticks) are compared with B3LYP/6-31G**(red sticks), B3LYP/6-311++G** (blue sticks), CAMB3LYP/6-31G**(violet sticks) and CAMB3LYP/6-311++G** (green sticks) and corresponding convoluted spectra (colored lines). Only $\pi\pi^*$ states are labeled, according to root numbers in the reference RASPT2 computations (Table S12)