Unraveling the enhancement mechanisms of H₂S sensing in SnO₂ surface: an *ab initio* perspective

Yuting Liu, Chao Xu*, Feng Long Gu

Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry, South China Normal University, Guangzhou 51006, P. R. China.

Table. S1 Some concerned Sn(Sb)-O bond lengths in SnO₂ before and after Sb-doping.

Fig. S1 Optimized surface of SnO₂(110) and Sb_{5c6c}/SnO₂(110) with various oxygen defects.

Table. S2 The adsorption energy (eV) of O_2 at different positions on the surface of $SnO_2(110)$ and $Sb_{5c6c}/SnO_2(110)$.

Fig. S2 Optimized adsorption structure of O_2 on SnO_2 (110) and Sb_{5c6c}/SnO_2 (110) surface at different positions.

Table. S3 The dissociative O⁻ atom adsorption energy (eV) at different positions on the surface of $SnO_2(110)$ and Sb_{5c6c}/SnO_2 .

Fig. S3 Optimized structure of dissociative O⁻ atom absorption at different positions on the surface of $SnO_2(110)$ and $Sb_{5c6c}/SnO_2(110)$.

Table. S4 The adsorption energy (eV) of O_2 at different positions on the surface of Sb-doped $SnO_2(110)$ with O_b vacancy(V(O_b)).

Fig. S4 Optimized adsorption structure of O_2 on Sb_{5c+6c}/SnO_2 (110) surface with O_b vacancy at different positions.

Table. S5 The adsorption energy (eV) of H_2S at different positions on the surface of $SnO_2(110)$ and Sb-doped $SnO_2(110)$.

Fig. S5 Optimized structure of H_2S at different positions on the surface of $SnO_2(110)$ and $Sb_{5c6c}/SnO_2(110)$.

Table. S6 The adsorption energy (eV) of H_2S at different positions on the surface of Sb-doped $SnO_2(110)$ with O_b vacancy.

Fig. S6 Optimized structure of H_2S at different positions on the surface of $Sb_{5c6c}/SnO_2(110)$ with O_b vacancy.

Table. S7 The adsorption energy (eV) of H_2S at different positions on the surface of Sb-doped $SnO_2(110)$ with pre-adsorbed O_2^- .

Fig. S7 Optimized structure of H_2S at different positions on the surface of $Sb_{5c6c}/SnO_2(110)$ with pre-adsorbed O_2^- .

Table. S8 The adsorption energy (eV) of H_2S at different positions on the surface of Sb-doped $SnO_2(110)$ with preadsorbed O⁻. note: $O(Sb_{5c})$ represents O adsorbed on Sb_{5c} .

Fig. S8 Optimized structure of H_2S at different positions on the surface of $Sb_{5c6c}/SnO_2(110)$ with preadsorbed O⁻.

Table S1 Some concerned Sn(Sb)-O bond lengths in SnO₂ before and after Sb-doping.

Bond (Å)	Sn _{6c} -O _b	Sn_{6c} - O_p	Sn_{5c} - O_p	Sn _{5c} -O _{3b}
SnO ₂ (110)	1.966	2.107	2.029	1.971
Sb _{5c6c} /SnO ₂ (110)	1.963	2.039	2.181	2.207

Fig. S1 Optimized surface of $SnO_2(110)$ and $Sb_{5c6c}/SnO_2(110)$ with various oxygen defects. (A1; B1) skin layer bridging oxygen; (A2; B2) skin layer plane oxygen; (A3; B3) inner layer the first bridging oxygen; (A4; B4) inner layer the second bridging oxygen.

Table S2 The adsorption energy (eV) of O_2 at different positions on the surface of $SnO_2(110)$ and $Sb_{5c6c}/SnO_2(110)$.

Adsorption sites	O _b	Op	Sn _{5c}	Sn _{6c}	Sb _{5c}	Sb _{6c}
SnO ₂ (110)	-0.0512	-0.1474	-0.2575	-0.0703	-	-
Sb _{5c6c} /SnO ₂ (110)	-0.0509	-0.1270	-0.1901	-0.0637	-0.0795	-0.0564

D1

Fig. S2 Optimized adsorption structure of O_2 on SnO_2 (110) and Sb_{5c6c}/SnO_2 (110) surface at different positions. (C1-C4) O_2 molecular is adsorbed respectively at the sites of O_b ; O_p ; Sn_{5c} and Sn_{6c} on the $SnO_2(110)$ surfaces. (D1-D6) O_2 molecular is adsorbed respectively at the sites of O_b ; O_p ; Sn_{5c} ; Sn_{6c} ; Sn_{5c} ; Sn_{5c} ; Sn_{5c} and $Sb_{5c6c}/SnO_2(110)$ surfaces.

Table S3 The dissociative O⁻ atom adsorption energy (eV) at different positions on the surface of $SnO_2(110)$ and Sb_{5c6c}/SnO_2 .

Adsorption sites	Ob	Op	Sn _{5c}	Sn _{6c}	Sb _{5c}	Sb _{6c}
SnO ₂ (110)	2.7858	1.3996	1.4172	2.7859	-	-
Sb _{5c6c} /SnO ₂ (110)	2.8527	0.2391	0.9195	1.5265	0.0627	2.8428

Fig. S3 Optimized structure of dissociative O⁻ atom absorption at different positions on the surface of $SnO_2(110)$ and $Sb_{5c6c}/SnO_2(110)$. (E1-E4) O atom is adsorbed respectively at the sites of O_b ; O_p ; Sn_{5c} and Sn_{6c} on the $SnO_2(110)$ surfaces. (F1-F6) O atom is adsorbed respectively at the sites of O_b ; O_p ; Sn_{5c} ; Sn_{6c} ; Sn_{5c} and Sb_{6c} on the Sb-doped $SnO_2(110)$ surfaces.

Table S4 The adsorption energy (eV) of O_2 at different positions on the surface of Sb-doped $SnO_2(110)$ with O_b vacancy(V(O_b)). V(o)1 represents that O_2 is placed above the oxygen vacancy and parallel to the X axis. V(o)2 means that O_2 is placed above the oxygen vacancy and parallel to the Y axis.

Adsorption sites	O _b	Op	Sn _{5c}	Sn _{6c}	Sb _{5c}	Sb _{6c}	V(o)1	V(o)2
Sb _{5c6c} /SnO ₂ (110)	-1.1461	-0.1217	-0.1471	-0.1066	-0.1056	-0.0899	-1.3710	-1.2153

Fig. S4 Optimized adsorption structure of O_2 on Sb_{5c+6c}/SnO_2 (110) surface with O_b vacancy at different positions. (G1-G6) O_2 molecular adsorption respectively at the sites of O_b ; O_p ; Sn_{5c} ; Sn_{6c} ; Sb_{5c} ; Sb_{6c} . (G7) O_2 molecular is placed above the oxygen vacancy and parallel to the X axis. (G8) O_2 molecular is placed above the oxygen vacancy and parallel to the Y axis.

Table S5 The adsorption en	ergy (eV) of H ₂ S at	different positions	on the surface	of $SnO_2(110)$
and Sb-doped SnO ₂ (110).				

Adsorption sites	O _b	Op	Sn _{5c}	Sn _{6c}	Sb _{5c}	Sb _{6c}
SnO ₂ (110)	-0.2809	-2.0670	-2.0749	-0.1984	-	-
Sb _{5c6c} /SnO ₂ (110)	-0.1629	-1.5819	-1.5921	-0.2337	-0.1158	-0.1861

Fig. S5 Optimized structure of H_2S at different positions on the surface of $SnO_2(110)$ and $Sb_{5c6c}/SnO_2(110)$. (K1-K4) H_2S molecular is adsorbed respectively at the sites of O_b ; O_p ; Sn_{5c} and Sn_{6c} on the $SnO_2(110)$ surfaces. (P1-P6) H_2S molecular is adsorbed respectively at the sites of O_b ; O_p ; Sn_{5c} ; Sn_{6c} ; Sn_{5c} ; Sn_{6c} ; Sb_{5c} and Sb_{6c} on the $Sb_{5c6c}/SnO_2(110)$ surfaces.

Table S6 The adsorption energy (eV) of H_2S at different positions on the surface of Sb-doped $SnO_2(110)$ with O_b vacancy.

Adsorption sites	Ob	Op	Sn _{5c}	Sn _{6c}	Sb _{5c}	Sb _{6c}	V(o)
Sb _{5c6c} /SnO ₂ (110)	-0.1214	-0.2163	-1.5280	-0.3819	-0.1921	-0.2636	-0.3746

Fig. S6 Optimized structure of H_2S at different positions on the surface of $Sb_{5c6c}/SnO_2(110)$ with O_b vacancy. (L1-L6) H_2S molecular is adsorbed respectively at the sites of O_b ; O_p ; Sn_{5c} ; Sn_{6c} ; Sb_{5c} and Sb_{6c} on the $Sb_{5c6c}/SnO_2(110)$ surfaces. (L7) H_2S molecular is adsorbed at the sites of O_b vacancy.

Table S7 The adsorption energy (eV) of H_2S at different positions on the surface of Sb-doped $SnO_2(110)$ with pre-adsorbed O_2^- .

Fig. S7 Optimized structure of H_2S at different positions on the surface of $Sb_{5c6c}/SnO_2(110)$ with pre-adsorbed O_2^- . (M1-M6) H_2S molecular is adsorbed respectively at the sites of O_b ; O_p ; Sn_{5c} ; Sn_{6c} ; Sb_{5c} and Sb_{6c} on the surface.

Table S8 The adsorption energy (eV) of H_2S at different positions on the surface of Sb-doped $SnO_2(110)$ with preadsorbed O⁻. note: $O(Sb_{5c})$ represents O adsorbed on Sb_{5c} .

Adsorption sites	Ob	Op	Sn _{5c}	Sn _{6c}	O(Sb _{5c})	Sb _{6c}
Sb _{5c6c} /SnO ₂ (110)	-0.2744	-3.1022	-3.1183	-0.5022	-0.3168	-0.4842

Fig. S8 Optimized structure of H_2S at different positions on the surface of $Sb_{5c6c}/SnO_2(110)$ with preadsorbed O⁻. (N1-N6) H_2S molecular is adsorbed respectively at the sites of O_b ; O_p ; Sn_{5c} ; Sn_{6c} ; $O(Sb_{5c})$ and Sb_{6c} on the surface. $O(Sb_{5c})$ represents O adsorbed on Sb_{5c} .