A close view to the organic linker in a MOF: structural insights from a combined ¹H NMR relaxometry and computational investigation

Silvia Pizzanelli, [†],* Susanna Monti, [†] Larisa Gordeeva, ^{‡,×} Marina V. Solovyeva, ^{‡,×} Angelo Freni, [†] Claudia Forte[†]

[†] CNR-ICCOM, Institute of Chemistry of Organometallic Compounds, via G. Moruzzi 1, 56124 Pisa, Italy

[‡] Boreskov Institute of Catalysis, Ac. Lavrentiev av. 5, Novosibirsk 630090, Russia [×] Novosibirsk State University, Pirogova str. 1, Novosibirsk 630090, Russia

Corresponding author: silvia.pizzanelli@cnr.it

Table of Content

Fig. S1. Distributions of H-N-H angles and N distances to the plane of the its ligands obtained from sampled configurations extracted from the molecular dynamics simulations at 25 and $100 \,^{\circ}$ C.

Fig. S2. Representative configuration of NH_2 -MIL-125 extracted from the molecular dynamics simulations at the 25 °C used to predict the EFG PAS orientation (yellow lines) on the different nitrogen sites. In this structure, the -CNH₂ moieties are planar. The tensor is perpendicular to the CHH plane and the N lone pair in the planar moiety is essentially a slightly polarized p_z atomic orbital. Thus, it should have a contribution to V_{zz} larger than the lone pair in a pyramidal nitrogen. The periodic replicas are represented with grey lines.

Fig. S3. ¹³C-¹H LG-CP spectrum of NH₂-MIL-125. The ¹H-¹³C dipolar splitting of carbon atoms 3, 5, 6, which are bound to a hydrogen, is about 10 kHz, which compares with 13 kHz, the value expected on the basis of the formula $-\frac{\mu_0}{4\pi} \frac{\gamma_{1H} \gamma_{13} c^{\hbar^2}}{r_{Hc}^3} \cos\theta_m$,³ where γ_{1H} and $\gamma_{13} c$ represent the gyromagnetic ratios of ¹H and ¹³C nuclei, respectively, μ_0 is the vacuum permeability, \hbar is the Planck constant, r_{HC} is the distance C-H, with r_{HC} =1.1 Å and θ_m =54.7°. On the contrary, the ¹H-¹³C dipolar splitting of carbon atoms 1, 2, 4, 7, 8, which are not bound to a hydrogen, is much smaller.

Fig. S4. Evolution of the hydrogen bond distance during the first 300 ps of the dynamics at T=110 °C.

Fig. S5. Principal components of the ¹⁴N EFG tensor (blue lines) in two different local structures of the BDC-NH₂ unit of NH₂-MIL-125. **a)** sp² nitrogen hybridization, NH₂ on the molecular plane; **b)** sp³ nitrogen hybridization, NH₂ perpendicular to the molecular plane (estracted from the MD trajectory at 110 °C). In both cases the V_{zz} component of the EFG tensor is along the lone pair direction.

Fig. S1. Distributions of H-N-H angle (**top**) and N distance to the plane of the its ligands (**bottom**) obtained from sampled configurations extracted from the molecular dynamics simulations at the indicated temperatures.

Fig. S2. Representative configuration of NH_2 -MIL-125 extracted from the molecular dynamics simulations at the 25 °C used to predict the EFG PAS orientation (yellow lines) on the different nitrogen sites. In this structure, the -CNH₂ moieties are planar. The tensor is perpendicular to the CHH plane and the N lone pair in the planar moiety is essentially a slightly polarized p_z atomic orbital. Thus, it should have a contribution to V_{zz} larger than the lone pair in a pyramidal nitrogen. The periodic replicas are represented with grey lines.

Fig. S3. ¹³C-¹H LG-CP spectrum of NH₂-MIL-125. The ¹H-¹³C dipolar splitting and the isotropic ¹³C chemical shift appear on F1 and F2 dimensions, respectively. The assignment of the ¹³C signals is based on that reported for IRMOF-3 in ref. 1.

The ¹H-¹³C dipolar splitting of carbon atoms 3, 5, 6, which are bound to a hydrogen, is about 10 kHz, which compares with 13 kHz, the value expected on the basis of the formula

 $-\frac{\mu_0}{4\pi} \frac{\gamma_{1_H} \gamma_{13_C} \hbar^2}{r_{HC}^3} \cos \theta_m,^2 \text{ where } \gamma_{1_H} \text{ and } \gamma_{13_C} \text{ represent the gyromagnetic ratios of } {}^{1}\text{H} \text{ and } 1^{13}\text{C} \text{ nuclei, respectively, } \mu_0 \text{ is the vacuum permeability, } \hbar \text{ is the Planck constant, } r_{HC} \text{ is the distance C-H, with } r_{HC} = 1.1 \text{ Å and } \theta_m = 54.7^{\circ}.$

On the contrary, the ¹H-¹³C dipolar splitting of carbon atoms 1, 2, 4, 7, 8, which are not bound to a hydrogen, is much smaller.

Fig. S4. Evolution of the hydrogen bond distance during the first 300 ps of the dynamics at T=110 °C.

Fig. S5. Principal components of the ¹⁴N EFG tensor (blue lines) in two different local structures of the BDC-NH₂ unit of NH₂-MIL-125. **a)** sp² nitrogen hybridization, NH₂ on the molecular plane; **b)** sp³ nitrogen hybridization, NH₂ perpendicular to the molecular plane (estracted from the MD trajectory at 110 °C). In both cases the V_{zz} component of the EFG tensor is along the lone pair direction. The representation of EFG tensors as surfaces obtained by means of TensorView is shown.³

¹ Morris, W.; Taylor, R. E.; Dybowski, C.; Yaghi, O. M.; Garcia-Garibay, M. A. Framework mobility in the metal–organic framework crystal IRMOF-3: Evidence for aromatic ring and amine rotation. *J. Mol. Struct.* **2011**, *1004*, 94-101.

² van Rossum, B.-J.; de Groot, C. P.; Ladizhansky, V.; Vega, S.; de Groot, H. J. M. A Method for Measuring Heteronuclear (¹H-¹³C) Distances in High Speed MAS NMR *J. Am. Chem. Soc.* **2000**, *122*, 3465-3472.

³ R. P. Young, C. R. Lewis, C. Yang, L. Wang, J. K. Harper, L. J. Mueller "TensorView: A software tool for displaying NMR tensors" *Magn. Reason. Chem.* **2019**, *57*, 211–223.