Theoretical Characterization of the Electronic Properties of Heterogeneous Vertical Stacks of 2D Metal Dichalcogenides Containing one Doped Layer

Amine Slassi, David Cornil, and Jérôme Cornil

¹Laboratory for Chemistry of Novel Materials, University of Mons, BE-7000 Mons, Belgium

E-mail : jerome.cornil@umons.ac.be

Systems	a(A°)	d (A°)	E _b (eV)	X-S / X-Se length
MoS ₂	15.58			L _(Mo-S) :2.39
WS ₂	15.64			L _(W—S) : 2.40
WSe ₂	16.26			L _(W—Se) : 2.51
WS ₂ /MoS ₂	15.62	2.86	-2.83	L _(W-S) : 2.40 L _(Mo-S) : 2.39
WSe ₂ /MoS ₂	15.95	2.89	-3.05	L _(W-Se) : 2.51 L _(Mo-S) : 2.41

Table S1: Optimized lattice constant a (in Å) of the super cell, interlayer distance d (in Å), binding energy E_b (in eV) and bond lengths (in Å).

Figure S1: Band structure of the hetero-bilayers with band-decomposed charge density isosurfaces of the valence band maximum (VBM) and conduction band minimum (CBM).

systems	a (A°)	d (A°)	E _b (eV)	L _{(X-S) or (X-Se)} bond length (Ang)
MoS _{N2}	15.58	-	-	L _(Mo—N) : 1.98
Mo _{Nb} S ₂	15.61	-	-	L _(Nb-S) : 2.42
WS _{F2}	15.63	-	-	L _(W—F) : 2.59
W _{Re} S ₂	15.58	-	-	L _(Re—S) : 2.44
WSe _{F2}	16.21	-	-	L _(W—F) : 2.24
W _{Re} Se ₂	16.28	-	-	L _(Re-Se) : 2.52
WS _{F2} /MoS ₂	15.61 (↓0.1%)	2.80 (↓2.1%)	-2.75 (↓2.73%)	$L_{(W-F)}$: 2.54, $L_{(Mo-S)}$: 2.39
WSe _{F2} /MoS ₂	15.92 (↑0.1%)	2.86 (↓1.05%)	-3.21 (†5.08%)	$L_{(W-F)}$: 2.18, $L_{(Mo-S)}$: 2.40
W _{Re} S ₂ /MoS ₂	15.62 (↓0.001%)	2.79 (↓2.45%)	-2.94 (↑4.0%)	L _(Re-S) : 2.44, L _(Mo-S) : 2.39
W _{Re} Se ₂ /MoS ₂	15.95 (†0.3%)	2.88 (↓0.7%)	-3.37 (†9.7%)	$L_{(Re-Se)}$: 2.53, $L_{(Mo-S)}$: 2.41
WS ₂ /MoS _{N2}	15.62 (↓0.001%)	2.78 (↓2.88%)	-2.92 (†3.32)	L _(W-S) 2.40, L _(Mo-N) 1.98
WSe ₂ /MoS _{N2}	15.93 (↑0.19%)	2.86 (↓1.40%)	-3.25 (↑6.10%)	L _(W-Se) : 2.50, L _(Mo-N) : 2.00
WS ₂ /Mo _{Nb} S ₂	15.65 (↑0.17%)	2.79 (↓2.51%)	-3.13 (†9.70%)	L _(W-S) : 2.40, L _(Nb-S) : 2.42
WSe ₂ /Mo _{Nb} S ₂	15.96 (†0.39%)	2.88 (↓0.7%)	-3.52 (†13.30%)	L _(W-Se) :2.51 , L _(Nb-S) : 2.44

Table S2: Lattice constant, interlayer distance, binding energy of substitutionally doped hetero-structures. We report between parentheses the relative shifts with respect to the pristine systems.

System	Q _{bader} (e)	μ(D)
WS ₂ /MoS ₂	+0.03/-0.03	0.25
WSe ₂ /MoS ₂	+0.37/-0.37	1.18
WS _{F2} /MoS ₂	+0.06/-0.06 (↑100%)	1.36 (†444%)
WSe _{F2} /MoS ₂	+0.63/-0.63 (↑71%)	3.03 (†156.8%)
W _{Re} S ₂ /MoS ₂	+0.23/-0.23 (↑6666%)	1.62 (†548%)
W _{Re} Se ₂ /MoS ₂	+0.67/-0.67 (†82%)	3.13 (†165.26)
WS ₂ /MoS _{N2}	+0.16/-0.16 (↑433%)	1.05 (†320%)
WSe ₂ /MoS _{N2}	+0.55/-0.55 (†49%)	2.05 (†73.73%)
WS ₂ /Mo _{Nb} S ₂	+0.24/-0.24 (↑700%)	1.70 (†580%)
WSe ₂ /Mo _{Nb} S ₂	+0.62/-0.62 (↑68%)	2.65 (†124.58%)

Table S3: Bader charge on the individual sheets and total dipole moment along the z direction in the bilayer with substitutional doping. We report between parentheses the relative changes with respect to the pristine systems.

Figure S2: Band structure of substitutionally doped monolayers, showing the half-filled occupied trap states within the gap, with relevant band-decomposed charge density isosurfaces. The total contribution of the dopant in the trap levels is \sim 15% for N, \sim 7% for F, and \sim 48% for Re.

Figure S3: Band structure of substitutionally doped monolayers with two different concentrations for : (a) Nbdoped MoS_2 and (b) F-doped WS_2 , showing the negligible effect of the variation in the doping concentration on the sharp/localization of the defect states within the band gap.

System	K- _{VBM}	К- _{СВМ}	K- _{Traps}
	35.16%Mo-d _{xy}	85.91%Mo-d _{z2}	42.24%Mo-d _{z2}
MoS _{N2}	35.16%Mo-d _{x2-y2}	5.57%Mo-s	7.58% Mo-d _{x2-y2}
	6.94%S-p _x	3.76%S-p _x	7.58%Mo-d _{xy}
	6.94%S-p _y	3.76%S-р _у	5.6%S-p _x , 5.6%S-p _y
			14.90%N-pz
Mo _{Nb} S ₂	38.30%Mo-d _{xy}	85.77%Mo-d _{z2}	53.77%Mo-d _{z2}
	38.30%Mo-d _{x2-y2}	5.70%Mo-s	11.75%Nb-d _{z2}
	2.2%Nb-d _{xy}	3.76%S-p _x	5.75%Mo-d _{x2-y2}
	2.2%Nb-d _{x2-y2}	3.76%S-p _y	5.75% Mo-d _{xy}
	8.05%S-p _x		14.96%S-p _z
	8.05%S-p _y		
WS _{F2}	39.83%W-d _{x2-y2}	56.45% W-d _{z2}	18.43%W-d _{xy}
	39.58% W-d _{xy}	9.45%W-d _{x2-y2}	21.52%W-d _{xz}
	9.93%S-p _x	9.45%W-d _{xy}	11.73%W-d _{x2-y2}
	9.93%S-p _y	7.54%S-p _x	11.70%W-d _{z2}
		7.54%S-p _y	11%W-dyz
		6.65%S-s	3.5% F-p _z , 3.2%F-p _x ,
			5.15%S-p _x , 5.15%S-p _y , 5.15%S-p _z
W _{Re} S ₂	39.80% W-d _{x2-y2}	52.36%W-d _{z2}	23.53%W-d _{z2}
	39.80%W-d _{xy}	12.81%W-d _{x2-y2}	26.28%Re-d _{z2}
	9.95%S-p _x	12.83%W-d _{xy}	13.35%W-d _{x2-y2}
	9.95%S-p _y	7.07%S-p _x	12.35%W-d _{xy}
		7.07%S-р _у	8.94%S-p _x , 8.8%S-p _y
		5.37%S-s	
WSe _{F2}	40.16% W-d _{xy}	80.83%W-d _{z2}	19.03%W-d _{xy}
	40.16%W-d _{x2-y2}	9.14%W-s	19.80%W-d _{z2}
	9.16%Se-p _x	2.74%Se-p _x	19.03%W-d _{x2-y2}
	9.16%Se-p _y	2.74%Se-p _y	8.95%W-d _{xz}
			8.95%W-d _{yz}
			4.6%Se-p _x , 4.60%Se-p _y , 5.11%Se-p _z
			6.4%F-pz
W _{Re} Se ₂	40.28% W-d _{xy}	44.88%W-d _{z2}	31.05%W-d _{xy}
	40.28%W-d _{x2-y2}	8.88%Re-d _{z2}	14.71%W-d _{x2-y2}
	9.16%Se-p _x	5.88%W-s	23.02%W-d _{z2}
	9.16%Se-p _y	8.13%Se-p _x	7.70%W-d _{xy}
		8.13%Se-p _y	12.15%Re-d _{z2} , 4.35%Re-d _{x2-y2} , 13.04%Re-d _{xy}
		6.5 %W-dxy	9.47%Se-p _x , 7.42%Se-p _y
		6.5%Re-dxy	

Table S4: Orbital characters of the VBM and CBM at the K point in the four isolated monolayers.

Figure S4: Band structures of the bilayers doped by substitutional doping with the trap levels in the gap highlighted in red

Systems	a (A°)	d (A°)	D(A°)	E _b (eV)	Ea (eV)	L _(X-S) bond length
MoS2-H	15.60	-	1.43	-	-1.62	L _(S-H) : 1.43
MoS2-F	15.60	-	1.81	-	-2.60	L _(S-F) :1.81
MoS2-O	15.60	-	1.52	-	-5.90	L _(S-O) : 1.50
MoS2-CH3	15.60	-	1.82	-	-1.617	L _(S-C) : 1.82
MoS ₂ -CF ₃	15.60	-	1.95	-	-0.63	L _(S-C) : 1.95
WS2/MoS2-H	15.62 ()	2.79	1.43	-2.81	-1.65	L _(W-S) : 2.40
						L _(Mo-S) : 2.41
						L _(S-H) : 1.43
WS2/M0S2-F	15.62.0	2.84	1.81	-2 825	-2.61	Low sp.: 2.40
						Lar a: 240
						L _(M0-S) : 2.40
						L _(S—F) : 1.81
WS ₂ /MoS ₂ -O	15.62	2.82	1.51	-2.799	-5.92	L _(W-S) 2.40
						L _(Mo-S) 2.40
						L _(S-O) 1.51
WS2/MoS2-CH3	15.621	2.81	1.82	-2.86	-1.67	L _(W-S) 2.40
						L _(Mo-S) 2.41
						L _(S-C) 1.82
WS2/M0S2-CF2	15.62	2 79	1 94	-2 795	-0.65	Law sp24
						$L_{1} = 2.41$
						L _(Mo-S) 2.41
						L _(S-C) 1.94
WSe ₂ /MoS ₂ -H	15.95	2.88	1.39	-3.08	-1.86	L _(W—Se) : 2.51
						L _(Mo-S) : 2.43
						L _(S-H) : 1.39
WSe ₂ /MoS ₂ -F	15.94	2.86	1.81	-3.06	-2.62	L _(W-Se) 2.50
						L _(Mo-S) 2.42
						L _(S-F) 1.81
WSe ₂ /MoS ₂ -O	15.94	2.88	1.51	-3.03	-5.92	L _(W_Se) 2.51
						Lav (p) 2 42
						-(Mo-S) 2.72
						L(S=0) 1.31
WSe ₂ /MoS ₂ -N	15.95	2.87	1.52	-3.08	-1.63	L _(W—Se) 2.51
						L _(Mo-N) 2.40
						L _(S-N) 1.52
WSe ₂ /MoS ₂ -CH ₃	15.96	2.88	1.78	-3.19	-1.80	L _(W-Se) 2.51
						L _(Mo-S) 2.43
						L _(S-C) 1.79
WSe2/M0S2-CF3	15.96	2.88	1.86	-3.19	-0.80	L(w_sc) 2.51
						L(Mo-S) 2.44
						L _(S-C) 1.86

Table S5: Lattice constants, Mo-R bond lengths, interlayer distances d, binding energies between top and bottom layer and adhesion energies of the ad-atoms for the various structures considered.

Figure S5: Band structure of an isolated MoS_2 monolayer with covalently bounded CF_3 - and CH_3 -groups showing the appearance of half-filled trap states in the gap. The total contributions of the dopants in trap levels are 11% for CH_3 and 7.3% for CF_3 .

System	K- _{VBM}	К- _{СВМ}	K- _{Traps}
	41.72%Mo-d _{xy}	86.01%Mo-d _{z2}	Mo-d _{xy} (24.10%)
MoS2-H	41.72%Mo-d _{x2-y2}	5.76%Mo-s	Mo-d _{z2} (21.46 %)
	8 35% S n	4.07% S. p.	Mo-d _{x2-y2} (18.62 %)
	0.55 /03-µx	4.07 /03-p _x	Mo-d _{xz} (10%),
	8.35%S-p _y	4.07%S-p _y	Mo-d _{yz} (10%),
			S-p _y (5.7%),
			S-px (7.03 %)
			S-s (5.80%)
			H-s (5%)
MoS ₂ -F	41.72%Mo-d _{xy}	86.01%Mo-dz2	Mo-d _{z2} (11.38%)
	41.72%Mo-d _{x2-y2}	5.76%Mo-s	Mo-dxy (9.28%)
	8 35% S_n	4 07%S-n	Mo-d _{x2-y2} (9.28%)
	0.05705-p _x	4.07703-px	F-p _z (21%)
	8.35%S-p _y	4.07%S-p _y	S-p _z (17.78%)
			S-p _x (6.1%)
			S-p _y (6.1%)
MoS2-O	40.51%Mo-d _{xy}	86.02%Mo-d _{z2}	Mo-dz2 (36.65%)
	40.51%Mo-d _{x2-y2}	5.77%Mo-s	Mo-dxy (16.16%)
	8 95%S-n	4.06%S-n	Mo-d _{x2-y2} (16.16%)
	0.95705 Px	1.00 /0.5 px	O-p _x (3.1%)
	8.95%S-p _y	4.06%S-p _y	O-p _y (3.1%)
	1.00%О-р _х		S-p _z (8.02%)
	1.00%О-р _у		S-p _x (10.20%)
			S-p _y (10.20%)
MoS ₂ -CH3	41.72%Mo-d _{xy}	86.01%Mo-d _{z2}	Mo-d _{z2} (22.38%)
	41.72%Mo-d _{x2-y2}	5.76%Mo-s	Mo-d _{x2-y2} (19.90%)
	8.35%S-p _x	4.07%S-p _x	Mo-d _{xy} (19.75%)
	9 250/ S m	4.079/ 6 -	S-p _x (9.3%)
	8.35%3-р _у	4.07%S-p _y	S-p _y (9.3%)
			S-p _z (5.1%)
			C-p _z (5.1%)
MoS ₂ -CF3	41.72%Mo-d _{xy}	86.01%Mo-d _{z2}	Mo-d _{x2-y2} (17.10%)
	41.72%Mo-d _{x2-y2}	5.76%Mo-s	Mo-d _{z2} (17.10%)
	8.35%S-px	4.07%S-p _x	Mo-d _{xy} (17.22%)
	0.259/6	4.070/ 6	S-p _x (8.2%)
	8.35%S-p _y	4.07%S-p _y	S-p _y (8.2%)
			C-p _z (7.3%)
			S-s (6.7%)

Table S6: Orbital characters of the VBM, CBM and trap states at the K-point for the four isolated functionalized monolayers.

Figure S6: Alignment of the band edges in WS_2/MoS_2 and WSe_2/MoS_2 bilayers with covalently bounded CF_3 and CH_3 groups.

Figure S7: Band structures of bilayers with ad-atoms and groups attached to the MoS_2 layer. We highlight in red the trap levels appearing in the gap of the bilayer.

Systems	Q _{bader} (e)	μz (D)
MoS ₂ -H	-0.09/+0.09	-0.79
MoS ₂ -F	+0.54/-0.54	1.13
MoS ₂ -O	+1.04/-1.04	1.16
MoS ₂ /CH ₃	-0.11/+0.11	-1.80
MoS ₂ /CF ₃	+0.08/-0.08	-0.40
WS ₂ /MoS ₂ -H	-0.07/+0.07 (130%↓)	-0.96
WS ₂ /MoS ₂ -F	+0.024/-0.24 (700%↑)	1.36
WS ₂ /MoS ₂ -O	+0.03/-0.03 (3%↑)	1.33
WS ₂ /MoS ₂ -CH ₃	-0.04 /+0.04 (34%↑)	-2.08
WS ₂ /MoS ₂ -CF ₃	-0.02/+0.02 (34%↓)	-0.513
WSe ₂ /MoS ₂ -H	+0.34/-0.34 (8.7%↓)	-0.53
WSe ₂ /MoS ₂ -F	+0.37/-0.37 (2%↑)	1.70
WSe ₂ /MoS ₂ -O	+0.37/-0.37 (1%↑)	1.86
WSe ₂ /MoS ₂ -CH ₃	+0.35/-0.35 (6%↓)	-0.96
WSe ₂ /MoS ₂ -CF ₃	+0.34/-0.34 (8.10%↓)	-0.37

Table S7: Bader charge analysis and total dipole moment along the z axis perpendicular to the basal plane in the bilayer doped with ad-atoms or groups. We report between parentheses the relative changes with respect to the pristine systems.

Systems	a (A°)	d (A°)	D(A°)	E_b (eV)	Ea (eV)	L _(X-S) bond length
MoS ₂ /TTF	15.60	-	2.71	-	-0.66	
MoS ₂ /F ₄ TCNQ	15.60	-	2.72	-	-0.78	
MoS ₂ /C ₁₀ H ₈	16.60	-	2.83	-	-0.44	
WS2/MoS2/TTF	15.62 (↑0.02%)	2.81 (↓1.7%)	2.71 (↓0.1)	-2.79 (↓1.08%)	-0.68 (†1.4%)	L _(W-S) 2.402 L _(Mo-S) 2.391
WS ₂ /MoS ₂ /F ₄ TCNQ	15.62 (↑0.02%)	2.77 (↓3.1%)	2.72 (↓0.1)	-2.87 (†1.5%)	-0.86 (↑9.1%)	L _(W-S) 2.401 L _(Mo-S) 2.392
WS ₂ /MoS ₂ /C ₁₀ H ₈	15.62 (↑0.02%)	2.80 (↓2.1%)	2.84 (↓0.4%)	-2.78 (↓1.1%	-0.42 (↓6.1%)	L _(W-S) 2.402 L _(Mo-S) 2.390
WSe ₂ /MoS ₂ /TTF	15.93 (↑0.13%)	2.87 (↓0.7%)	2.66 (↓1.8%)	-3.04 (↓0.33)	-0.82 (18%)	L _(W-Se) 2.406 L _(Mo-S) 2.504
WSe ₂ /MoS ₂ /F ₄ TCNQ	15.92 (↑0.12%)	2.82 (\1.4%)	2.68 (\1.49%)	-3.18 (↑4.2)	-0.87 (†10.35%)	L _(W-Se) 2.505 L _(Mo-S) 2.407
WSe ₂ /MoS ₂ /C ₁₀ H ₈	15.92 (↑0.12%)	2.87 (↓0.35%)	2.79 (↓1.4%)	-3.10 (↑1.64)	-0.53 (†15.1%	L _(W-Se) 2.506 L _(Mo-S) 2.408

Table S8: Lattice constant a (A°), bond length $L_{(X-S) \text{ or } (X-Se)}$, interlayer distance d (A°) between top (MoS2) andbottom layers (WS2 or WSe2), interlayer distance D (A°) between molecules and top layer (MoS2) , bindingenergy E_b (eV), adsorption energy Ea (eV) of hetero-structures with physisorbed molecules.

System	K- _{VBM}	К- _{СВМ}	K- _{Traps}
MoS ₂ -TTF	41.72%Mo-d _{xy}	86.01%Mo-d _{z2}	S-Pz (51.73 %)
	41.72%Mo-d _{x2-y2}	5.76%Mo-s	C-pz (34.30%)
	8.35%S-p _x	4.07%S-p _x	
	8.35%S-p _y	4.07%S-p _y	
MoS ₂ /F ₄ -TCNQ	40.51%Mo-d _{xy}	86.02%Mo-d _{z2}	C-pz (52.60%)
	40.51%Mo-d _{x2-y2}	5.77%Mo-s	N-pz (34.70%)
	8.95%S-p _x	4.06%S-p _x	F-pz (4.20%)
	8.95%S-p _y	4.06%S-p _y	
	1.00%O-p _x		
	1.00%О-р _у		
MoS ₂ /C ₁₀ H ₈	41.72%Mo-d _{xy}	86.01%Mo-d _{z2}	C-p _z (51.30%)
	41.72%Mo-d _{x2-y2}	5.76%Mo-s	Mo-d _{xy} (16.62%)
	8.35%S-p _x	4.07%S-p _x	Mo-d _{x2-y2} (19.55%)
	8.35%S-p _y	4.07%S-p _y	S-pz (4.2%)

Table S9: Orbital characters of the VBM, CBM and trap states at the K-point for the three isolated functionalized monolayers.

Figure S8: Band structures of bilayers with adsorbed molecules, with the trap states within the gap highlighted in red

Systems	Q _{bader} (e)	ΔV (eV)	μ _z (D)
MoS ₂ /TTF	-0.22 /+0.22	+0.3	-1.66
MoS ₂ /F ₄ TCNQ	+0.24/-0.24	-0.08	+0.45
$MoS_2/C_{10}H_8$	-0.07/0.07	+0.15	-0.87
WS ₂ /MoS ₂ /TTF	+0.02 /-0.02 (34%↓)	0.28	-1.58
	(+0.02 /-0.22 /+0.20)		
WS ₂ /MoS ₂ /F ₄ -TCNQ	+0.12 /-0.12 (300↑)	-0.46	+2.55
	(+0.12 /+0.27/-0.38)		
WS ₂ /MoS ₂ /C ₁₀ H ₈	+0.03/-0.03 (2%)	0.07	-0.37
	(+0.03/-0.107/+0.07)		
WSe ₂ /MoS ₂ /TTF	+0.37 /-0.37 (1%↑)	0.21	-1.20
	(+0.37/ -0.62 / +0.25)		
WSe ₂ /MoS ₂ /F ₄ -TCNQ	+0.51 /-0.51 (37.84%↑)	-0.68	+3.96
	(+0.51/-0.052 /-0.46)		
WSe ₂ /MoS ₂ /C ₁₀ H ₈	+0.37/-0.37 (1%↑)	-0.05	+0.40
	(+0.37/-0.46/+0.09)		

Table S10: Bader charge and total dipole moment along the direction perpendicular to the 2D sheets for the systems with physisorbed molecules. We report between parentheses the relative changes with respect to the pristine systems.