Supporting information for: Probing Radical-Molecule Interactions with a Second Generation Energy Decomposition Analysis of DFT Calculations Using Absolutely Localized Molecular Orbitals

Yuezhi Mao,^{*,†} Daniel S. Levine,[†] Matthias Loipersberger,[†] Paul R. Horn,[†] and Martin Head-Gordon^{*,†,‡}

 † Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California at Berkeley, Berkeley, CA 94720, USA

‡ Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

E-mail: yuezhi.mao@berkeley.edu; mhg@cchem.berkeley.edu

			Radical						
$d(\text{\AA})$	ELEC	PAULI	DISP	POL	CT	INT			
2.7	-35.29	87.59	-20.95	-8.30	-26.49	-3.44			
2.9	-21.16	49.04	-16.20	-6.09	-20.24	-14.66			
3.1	-13.26	27.36	-12.42	-4.79	-15.50	-18.61			
3.3	-8.82	15.21	-9.43	-3.92	-11.84	-18.79			
3.5	-6.27	8.42	-7.13	-3.27	-8.96	-17.22			
3.7	-4.77	4.64	-5.38	-2.76	-6.71	-14.98			
3.9	-3.86	2.54	-4.03	-2.33	-4.96	-12.64			
4.1	-3.27	1.38	-3.06	-1.97	-3.58	-10.51			
4.5	-2.57	0.40	-1.84	-1.43	-1.74	-7.18			
5.0	-2.06	0.08	-1.02	-1.00	-0.54	-4.54			
			Neut	Neutral					
$d(\text{\AA})$	ELEC	PAULI	DISP	POL	CT	INT			
2.7	-36.78	65.88	-23.11	-2.45	-3.53	36.80			
2.9	-19.67	38.42	-18.06	-1.19	-1.93	17.23			
3.1	-10.17	22.58	-14.01	-0.61	-1.10	6.85			
3.3	-4.96	13.43	-10.78	-0.35	-0.65	1.65			
3.5	-2.15	8.13	-8.25	-0.23	-0.39	-0.73			
3.7	-0.68	5.05	-6.28	-0.16	-0.24	-1.63			
3.9	0.07	3.24	-4.75	-0.12	-0.16	-1.78			
4.1	0.42	2.17	-3.61	-0.09	-0.11	-1.64			
4.5	0.60	1.12	-2.16	-0.05	-0.06	-1.15			
5.0	0.51	0.62	-1.20	-0.03	-0.04	-0.64			

Table S1: Comparison of the total interaction energies and ALMO-EDA results (in kcal/mol) for the sandwiched benzene dimer radical cation and its neutral counterpart at varying intermolecular distances evaluated at the ω B97M-V/def2-QZVPPD level of theory.

	Radical Cation									
$d(\text{\AA})$	ELEC	PAULI	DISP	POL	CT	INT				
1.52	-21.30	54.19	-12.50	-8.10	-15.04	-2.76				
1.72	-14.33	31.56	-9.77	-6.17	-10.43	-9.13				
1.92	-10.04	18.06	-7.56	-4.84	-7.25	-11.63				
2.12	-7.39	10.18	-5.80	-3.90	-5.07	-11.97				
2.32	-5.72	5.67	-4.42	-3.19	-3.57	-11.24				
2.52	-4.64	3.12	-3.34	-2.64	-2.56	-10.07				
2.72	-3.91	1.70	-2.51	-2.20	-1.88	-8.81				
2.92	-3.39	0.91	-1.90	-1.84	-1.42	-7.63				
3.32	-2.67	0.26	-1.11	-1.29	-0.89	-5.71				
3.82	-2.08	0.05	-0.61	-0.87	-0.58	-4.10				
			Neutral							
$d(\text{\AA})$	ELEC	PAULI	DISP	POL	CT	INT				
1.52	-20.99	59.43	-13.57	-3.27	-5.45	16.14				
1.72	-12.68	34.93	-10.69	-1.92	-3.34	6.30				
1.92	-7.62	20.19	-8.35	-1.13	-2.06	1.03				
2.12	-4.59	11.49	-6.47	-0.69	-1.26	-1.52				
2.32	-2.80	6.46	-4.97	-0.43	-0.78	-2.51				
2.52	-1.75	3.59	-3.79	-0.28	-0.47	-2.71				
2.72	-1.14	1.98	-2.88	-0.19	-0.29	-2.52				
2.92	-0.77	1.08	-2.18	-0.13	-0.18	-2.19				
3.32	-0.42	0.31	-1.29	-0.06	-0.08	-1.53				
3.82	-0.24	0.06	-0.69	-0.03	-0.04	-0.94				

Table S2: Comparison of the total interaction energies and ALMO-EDA results (in kcal/mol) for the T-shaped benzene dimer radical cation and its neutral counterpart at varying intermolecular distances evaluated at the ω B97M-V/def2-QZVPPD level of theory.

Figure S1: Total interaction energies (in kcal/mol) of the sandwich (left panel) and T-shaped (right panel) benzene dimer radical cation at varying intermolecular distances calculated using ω B97M-V^{S1} and M06-2X^{S2} with the def2-QZVPPD^{S3,S4} basis set. The SAPT0(UHF) results and the reference values are taken from ref. S5.

Table S3: Vertical ALMO-EDA results (in kcal/mol) for the sandwiched and T-shaped benzene dimer radical cations at minimum-energy distance and long range with different density functional approximations. Note that Grimme's -D3 correction with Becke-Johnson damping^{S6} was applied to the calculations with BLYP^{S7,S8} and B3LYP^{S9} functionals.

	Sa	andwiched	(3.3 Å)		Sandwiched (5.0 Å)				
	$\omega B97M-V$	M06-2X	BLYP	B3LYP	 $\omega B97M-V$	M06-2X	BLYP	B3LYP	
ELEC	-8.82	-8.32	-8.22	-8.40	-2.06	-2.08	-1.84	-1.96	
PAULI	15.21	13.85	14.16	14.25	0.08	0.06	0.07	0.08	
DISP	-9.43	-8.28	-9.97	-9.79	-1.02	-0.44	-1.07	-1.06	
POL	-3.92	-4.14	-3.40	-3.38	-1.00	-0.97	-0.95	-0.94	
CT	-11.84	-12.36	-22.44	-18.84	-0.54	-4.66	-19.46	-13.79	
INT	-18.79	-19.26	-29.88	-26.15	-4.54	-8.09	-23.26	-17.69	
	Г	C-shaped (2	2.12 Å)		T-shaped (3.82 Å)				
	$\omega B97M-V$	M06-2X	BLYP	B3LYP	 $\omega B97M-V$	M06-2X	BLYP	B3LYP	
ELEC	-7.39	-7.83	-6.93	-6.87	-2.08	-2.37	-1.95	-1.95	
PAULI	10.18	8.96	9.51	9.73	0.05	0.04	0.04	0.04	
DISP	-5.80	-4.73	-5.93	-6.01	-0.61	-0.31	-0.70	-0.69	
POL	-3.90	-4.75	-4.12	-3.53	-0.87	-0.98	-0.92	-0.82	
CT	-5.07	-4.52	-17.10	-13.47	-0.58	-3.28	-19.74	-13.69	
INT	-11.97	-12.88	-24.57	-20.15	-4.10	-6.91	-23.26	-17.11	

Table S4: Adiabatic ALMO-EDA results for the $Bz^{+\bullet}-Py$ and $Naph^{+\bullet}-Py$ complexes. ΔE_{bind} describes the energy lowering relative to the individually relaxed fragments at each intermediate state, r(C-N) stands for the distance between the N atom of pyridine and the C atom on the aromatic ring attacked by it, and the bending of the C-H bond is described by the $C_1-C_2-C_3-H_1$ dihedral, where C1 is the attacked C atom, C2 and C3 are the two adjacent C atoms on the aromatic ring, and H1 is the hydrogen atom attached to C1. A negative dihedral angle corresponds to bending away from the attacking direction.

	$Bz^{+\bullet}-Py$				$Naph^{+\bullet}-Py$				
	FRZ	POL	FULL	_	FRZ	POL	FULL		
$\Delta E_{\rm bind} \ (\rm kcal/mol)$	-8.11	-11.95	-40.48		-7.91	-10.91	-24.78		
r(C-N) (Å)	3.10	2.84	1.53		3.66	3.48	1.53		
C–H bending angle (°)	0.0	-0.1	-28.8		0.0	0.0	-28.6		

Figure S2: Spin density plots (isovalue = 0.002 a.u.) for the full SCF solutions of the T-shaped benzene dimer radical cation: (a) the unstable solution, which is obtained when one uses concatenated isolated fragment orbitals as the initial guess; (b) the stable SCF solution.

Table S5: Vertical ALMO-EDA results (in kcal/mol) for the ${}^{\bullet}OH(H_2O)$ complex in the ${}^{2}A'$ and ${}^{2}A''$ both at the global equilibrium geometry (optimized in ${}^{2}A'$).

	ELEC	PAULI	DISP	POL	CT	INT
$^{2}A^{\prime}$	-9.39	$\begin{array}{c} 8.78\\ 8.84\end{array}$	-1.80	-1.50	-2.00	-5.91
$^{2}A^{\prime\prime}$	-9.14		-1.80	-1.49	-1.98	-5.56

Figure S3: Spin density plot (isovalue = 0.005 a.u.) for the stable structure of ${}^{\bullet}OH(H_2O)_2$ calculated at the $\omega B97M$ -V/def2-TZVPD level of theory.

	•OH(H ₂ O) ₂								
	ΔE_{12}	ΔE_{13}	ΔE_{23}	ΔE_{3b}	ΔE_{123}				
ELEC	-9.43	-11.17	-6.87	0.00	-27.48				
PAULI	9.96	12.46	7.23	-0.18	29.47				
DISP	-2.14	-2.21	-1.75	0.15	-5.95				
		Н	$_{2}O$ trim	er					
	ΔE_{12}	ΔE_{13}	ΔE_{23}	ΔE_{3b}	ΔE_{123}				
ELEC	-9.75	-8.80	-9.71	0.00	-28.25				
PAULI	10.43	9.52	10.38	-0.23	30.10				
DISP	-2.17	-2.09	-2.17	0.15	-6.28				

Table S6: Frozen energy decomposition results (in kcal/mol) for the MBE of the ${}^{\bullet}OH(H_2O)_2$ complex and the H₂O trimer.

Table S7: Energies of the A' and A'' states for the pre-reactive complexes for by •OH with HCHO/CH₃CHO (in Hartree) and the differences (in kcal/mol) between them ($\Delta E = E(A'') - E(A')$). The ω B97M-V and M06-2X results are calculated using re-optimized geometries within each individual electronic state (A' or A''), while the MP2 results are calculated using geometries directly taken from ref. S10.

		E(A')	E(A'')	ΔE
НСНО	ω B97M-V	-190.259278	-190.259914	-0.40
	M06-2X	-190.242283	-190.242821	-0.34
	MP2	-189.829188	-189.829790	-0.38
CH ₃ CHO	ω B97M-V	-229.579334	-229.579937	-0.38
	M06-2X	-229.564966	-229.565466	-0.31
	MP2	-229.038415	-229.039009	-0.37

Figure S4: Spin density plots (isovalue = 0.005 a.u.) for the stationary structures along the [•]OH + HCHO reaction path at the full SCF solution: (a) the A'' state for the [•]OH···OCH₂ pre-reactive complex (PRC(F)); (b) the A' state for PRC(F), whose energy is 0.4 kcal/mol higher than that of A''; (c) the transition state for H-abstraction (TS1(F)); (d) the transition state for nucleophilic addition to the carbonyl group (TS2(F)).

Table	S8:	Full 4	ALMC)-EDA	A resul	ts (in	kcal/	/mol)	for 1	the ch	aracte	erized 1	PRC	and T	S str	ictu	ires
in the	•OH	+ H	CHO	and \bullet	ОН +	CH_3	CHO	react	ions	. The	e calcu	ulation	is are	perfo	rmed	at	the
$\omega B97 M$	I-V/c	def2-T	ZVPL) level	l of the	eory.											

	ELEC	PAULI	DISP	POL	CT	INT
PRC(F)	-9.01	9.22	-2.21	-1.57	-2.03	-5.59
TS1(F)	-9.06	23.72	-3.23	-2.01	-11.26	-1.85
TS2(F)	-26.65	63.02	-6.65	-5.55	-25.76	-1.60
PRC(A)	-10.39	10.55	-2.35	-1.89	-2.42	-6.50
TS1(A)	-9.60	23.52	-3.54	-2.01	-10.97	-2.59

Figure S5: Illustration of the Löwdin orbital pairing ^{S11} scheme employed in the calculation of the rehybridization (REHYB) energy. From top to bottom are the 2nd to 5th orbitals of α or β spin on the F[•] fragment. The left panels show the original, unpaired orbitals that are directly obtained from a fragment USCF calculation, among which the α orbitals (from top to bottom) are of 2s, $2p_x$, $2p_y$, and $2p_z$ characters and the β orbitals 2s, $2p_z$, $2p_y$, and 3s. The right panels show the transformed orbitals according to Löwdin's orbital pairing scheme, and each corresponding pair of α and β orbitals is of the same character ($2p_z$, $2p_y$, 2s, and $2p_x$ from top to bottom). The orbitals are generated from M06-2X ^{S2}/def2-TZVPD ^{S3,S4} calculations and are visualized with an isovalue of 0.02 a.u. except for the substantially more diffuse 3s-like orbital, for which a higher isovalue 0.04 a.u. is used.

References

- (S1) Mardirossian, N.; Head-Gordon, M. ωB97M-V: A combinatorially optimized, rangeseparated hybrid, meta-GGA density functional with VV10 nonlocal correlation. J. Chem. Phys. 2016, 144, 214110.
- (S2) Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. *Theor. Chem. Acc.* 2008, 120, 215–241.
- (S3) Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297–3305.
- (S4) Rappoport, D.; Furche, F. Property-optimized Gaussian basis sets for molecular response calculations. J. Chem. Phys. 2010, 133, 134105.
- (S5) Gonthier, J. F.; Sherrill, C. D. Density-fitted open-shell symmetry-adapted perturbation theory and application to π-stacking in benzene dimer cation and ionized DNA base pair steps. J. Chem. Phys. 2016, 145, 134106.
- (S6) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.
- (S7) Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. *Phys. Rev. A* 1988, *38*, 3098.
- (S8) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Phys. Rev. B* 1988, *37*, 785.

- (S9) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652.
- (S10) Alvarez-Idaboy, J. R.; Mora-Diez, N.; Boyd, R. J.; Vivier-Bunge, A. On the importance of prereactive complexes in molecule-radical reactions: hydrogen abstraction from aldehydes by OH. J. Am. Chem. Soc. 2001, 123, 2018–2024.
- (S11) Löwdin, P.-O. On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals. J. Chem. Phys. 1950, 18, 365–375.