Electronic Supplementary Information

Dynamics of the Reaction $CH_2I + O_2$ Probed via Infrared Emission of CO, CO₂, OH, and H₂CO

Ting-Yu Chen^a and Yuan-Pern Lee*abc

^aDepartment of Applied Chemistry and Institute of Molecular Science National Chiao Tung University, Hsinchu 30010, Taiwan. ^bCenter for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30010, Taiwan. ^cInstitute of Atomic and Molecular Sciences Academia Sinica, Taipei 10617, Taiwan.

E-mail: yplee@nctu.edu.tw

Keywords: Criegee intermediate, CH₂I, dynamics, IR emission, HCO + O₂

Contents

- Table S1 Comparison of yield and internal energies of CH_2I produced from photolysis of CH_2I_2 at varied wavelengths.
- Fig. S1 Assignments of observed IR emission lines of CO recorded 3–4 μs after photolysis of a flowing mixture of CH₂I₂/O₂/Ar (0.07/8.00/0.07 Torr) at 248 nm.
- Fig. S2 Semi-logarithmic plots of relative rotational populations of CO (v= 1–6) 3–4 µs and 5–6 µs after photolysis of a flowing mixture of CH₂I₂/O₂/Ar (0.07/8.00/0.07 Torr) at 248 nm.
- Fig. S3 Assignments of observed IR emission lines of OH produced 3–4 μ s after photolysis of a flowing mixture of CH₂I₂/O₂/Ar (0.07/8.00/0.07 Torr) at 248 nm.
- Fig. S4 Semi-logarithmic plots of relative rotational populations of OH (v= 1–3) 3–4 µs and 5–6 µs after photolysis of a flowing mixture of CH₂I₂/O₂/Ar (0.07/8.00/0.07 Torr) at 248 nm.
- Fig. S5 Assignments of observed IR emission lines of CO recorded 3–4 μ s after photolysis of a flowing mixture of CH₂I₂/O₂/Ar (0.07/8.00/0.07 Torr) at 308 nm.
- Fig. S6 Semi-logarithmic plots of relative rotational populations of CO (v= 1–5), 3–4 μ s and 5–6 μ s after photolysis of a flowing mixture of CH₂I₂/O₂/Ar (0.07/8.00/0.07 Torr) at 308 nm.
- Fig. S7 Representative IR emission spectra of OH recorded 0–9 μ s upon photolysis of a flowing mixture of CH₂I₂/O₂/Ar (0.07/8.00/0.07 Torr) at 308 nm.
- Fig. S8 Semi-logarithmic plots of relative rotational populations of OH (v= 1–3) 3–4 µs and 5–6 µs after photolysis of a flowing mixture of CH₂I₂/O₂/Ar (0.07/8.00/0.07 Torr) at 308 nm.
- Fig. S9 Emission spectra of H₂CO in spectral region 2600 3000 cm⁻¹ recorded 0–5 µs (b), 5–10 µs (c), 10–5 µs (d), 15–20 µs (e), and 20–25 µs (f) after photolysis of a flowing mixture of CH₂I₂/O₂/Ar (0.07/8.00/0.07 Torr) at 308 nm.

Table S1 Comparison of yield and internal energies of CH_2I produced from photolysis of CH_2I_2 at various wavelengths

		$CH_2I_2 \rightarrow CH_2I + I^{a}$		$CH_2I_2 \rightarrow CH_2I + I^* b$		
wavelength	energy	yield	E _{INT}	yield	E _{INT}	Ref.
/nm	/kJ mol ⁻¹		/kJ mol ⁻¹		/kJ mol ⁻¹	
248	482	0.54	267.8	0.46	177.0	с
248	482				151.9	d
248	482	0.50	233.5	0.50	149.4	е
266	450		202.6		116.7	е
280	427		176.6		97.5	е
304	394		141.8		90.4	е
308	388	0.75		0.25		С
355	337	1.00	99.6			е

^{*a*} Dissociation energy to form $CH_2I + I$ is $D_0 = 2.155 \pm 0.008$ eV (207.9 ± 0.8 kJ mol⁻¹). ^{*b*} Dissociation energy to form $CH_2I + I^*$ is $D_0 = 3.098 \pm 0.008$ eV (298.9 ± 0.8 kJ mol⁻¹). ^{*c*} Transient infrared emission of CH_2I . S. L. Baughcum and S. R. Leone, J. Chem. Phys. **72**, 6531 (1980). ^{*d*} velocity-mapped ion imaging with 2 + 1 REMPI. J. H. Lehman, H. Li, and M. I. Lester, Chem. Phys. Lett. **590**, 16 (2013). ^{*e*} VUV ionization with 2 + 1 REMPI. B. W. Toulson, J. P. Alaniz, J. G. Hill, and C. Murray, Phys. Chem. Chem. Phys. **18**, 11091 (2016).

Fig. S1 Assignments of observed IR emission lines of CO recorded 3–4 μ s after photolysis of a flowing mixture of CH₂I₂/O₂/Ar (0.07/8.00/0.07 Torr) at 248 nm. The spectral resolution was 0.3 cm⁻¹. The assignments of vibration-rotational transitions are shown as sticks; the numbers correspond to *J*'; P(*v*'–*v*") and R(*v*'–*v*") represent the vibrational transition *v*'–*v*".

Fig. S2 Semi-logarithmic plots of relative rotational populations of CO (v = 1-6) 3–4 µs and 5–6 µs after photolysis of a flowing mixture of CH₂I₂/O₂/Ar (0.07/8.00/0.07 Torr) at 248 nm (symbols \Box for the *P*-branch and \bigcirc for the *R*-branch). Solid lines represent least-square fits; the confidence ranges are also shown.

Fig. S3 Assignments of observed IR emission lines of OH produced 3–4 μ s after photolysis of a flowing mixture of CH₂I₂/O₂/Ar (0.07/8.00/0.07 Torr) at 248 nm. The spectral resolution was 0.5 cm⁻¹. The assignments of vibration-rotational transitions are shown as sticks; the numbers correspond to *J*'; P(*v*'–*v*") represents the vibrational transition *v*'–*v*".

Fig. S4 Semi-logarithmic plots of relative rotational populations of OH (v = 1-3) 3–4 µs and 5–6 µs after photolysis of a flowing mixture of CH₂I₂/O₂/Ar (0.07/8.00/0.07 Torr) at 248 nm (symbols \Box for the P_{1e} -branch, \bigcirc for the P_{1f} -branch, \triangle for the P_{2e} -branch, and ∇ for the P_{2f} -branch). Solid lines represent least-square fits; the confidence ranges are also shown.

Fig. S5 Assignments of observed IR emission lines of CO recorded 3–4 μ s after photolysis of a flowing mixture of CH₂I₂/O₂/Ar (0.07/8.00/0.07 Torr) at 308 nm. The spectral resolution was 0.3 cm⁻¹. The assignments of vibration-rotational transitions are shown as sticks; the numbers correspond to *J*'; P(v'–v") and R(v'–v") represent the vibrational transition v'-v''.

Fig. S6 Semi-logarithmic plots of relative rotational populations of CO (v=1-5) 3–4 µs and 5–6 µs after photolysis of a flowing mixture of CH₂I₂/O₂/Ar (0.07/8.00/0.07 Torr) at 308 nm (symbols \Box for the *P*-branch and \bigcirc for the *R*-branch). Solid lines represent least-square fits; the confidence ranges are also shown.

Fig. S7 Representative IR emission spectra of OH recorded 0–9 μ s after photolysis of a flowing mixture of CH₂I₂/O₂/Ar (0.07/8.00/0.07 Torr) at 308 nm. The spectral resolution was 0.5 cm⁻¹. Four spectra recorded under identical experimental conditions were averaged to yield these spectra.

Fig. S8 Semi-logarithmic plots of relative rotational populations of OH (v=1-3) 3–4 µs and 5–6 µs after photolysis of a flowing mixture of CH₂I₂/O₂/Ar (0.07/8.00/0.07 Torr) at 308 nm (symbols \Box for the P_{1e} -branch, O for the P_{1f} -branch, Δ for the P_{2e} -branch, and ∇ for the P_{2f} -branch). Solid lines represent least-square fits; the confidence ranges are also shown.

Fig. S9 Emission spectra of H₂CO in spectral region $2600 - 3000 \text{ cm}^{-1}$ recorded 0–5 μ s (b), 5–10 μ s (c), 10–15 μ s (d), 15–20 μ s (e), and 20–25 μ s (f) upon photolysis of a flowing mixture of CH₂I₂/O₂/Ar (0.07/8.00/0.07 Torr) at 308 nm. IR absorption spectrum of H₂CO is shown in (a) for comparison. Spectral resolution was 0.7 cm⁻¹; six spectra recorded under similar conditions were averaged.