Supplementary information to

Effect of spin-phonon interaction on Urbach tails in flexible [M₂(bdc)₂(dabco)]

S.G. Kozlova, M.R. Ryzhikov, V.R. Shayapov, D.G. Samsonenko

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentyev Av., 3, RU-630090 Novosibirsk, Russian Federation. E-Mail: <u>sgk@niic.nsc.ru</u>

Fig. S1. Stability of the calculated absorption spectra relative to the basis set size (left) and density functional choice (right) for Co-DMOF. The absorption spectra calculated by B3LYP functional provide best reproduction of Kubelka—Munk functions in the region of intense absorption (300-400 nm).

Fig. S2. Determining exponents P and U for Zn-DMOF.

Fig. S4. Determining exponents P and U for Cu-DMOF.

Fig. S5_1. Determining exponents P and U for Ni-DMOF.

Fig. S5_2. Determining U for Ni-DMOF.

system.					
	M-M, Å	M-O, Å	0-C, Å	<m-m-o, td="" °<=""><td><o-m-m-o, td="" °<=""></o-m-m-o,></td></m-m-o,>	<o-m-m-o, td="" °<=""></o-m-m-o,>
$Zn_2(O_2CH)_4$	2.650	2.028	1.262	84.6	0.0
$Cu_2(O_2CH)_4$	2.506	1.965	1.263	86.6	0.0
Ni ₂ (O ₂ CH) ₄	2.674	1.982	1.262	84.1	0.0
$Co_2(O_2CH)_4$	2.583	2.006	1.263	85.4	0.0

Table S1. Optimized geometry parameters for the $M_2(O_2CH)_4$ paddle-wheel model system.

NTO1 53% E1 206 nm NTO2 39.7% Fig. S6. NTOs for the most intense transition in $Zn_2(O_2CH)_4$

Fig. S8. NTOs for some most intense transitions in Ni₂(O₂CH)₄

Fig. S9. NTOs for some most intense transitions in $Co_2(O_2CH)_4$