Molecular environment and reactivity in gels and colloidal solutions under identical conditions

Philip Groves, Jin Huang, Andreas Heise, Jennifer Marsh and Victor Chechik

Electronic Supplementary Information.

Table of contents.

Figure S1. Determination of cmc for PEG ₂₀₀₀ -Tyr ₆	2
Figures S2a and S2b. Q-band EPR spectra of PEG_{2000} -Tyr ₆ at 88K and a power saturation plot	3
Figure S3. Fitting a Q-band EPR spectrum of PEG_{2000} -Tyr ₆ micelles with X-band parameters	4
Tables S1a-S1b. EPR fitting parameters for micelles and gels	5
Figures S4a-S4b. DLS data for micelle to gel conversion	6
Figure S5. Demonstration of a lack of irreversible changes to PEG_{2000} -Tyr ₆ after gelation	7
Figure S6. UV spectra of PEG_{2000} -Tyr ₆ in micelles and gels	8
Figure S7. EPR spectrum of PEG ₂₀₀₀ -Tyr ₆ in methanol	9

Figure S1: PEG_{2000} -Tyr₆ determination of cmc by DLS count rate. Average of 3 measurements shown. Error bars indicate 95% confidence levels.

Figure S2a: Q-band EPR spectrum of spin labelled PEG₂₀₀₀-Tyr₆ at 88 K

Figure S2b: Power saturation experiment showing change in EPR signal intensity for spin labelled PEG_{2000} -Tyr₆ at 88 K with microwave power at Q-band

Figure S3: A Q-band EPR spectrum of PEG_{2000} -Tyr₆ micelle system and a 3-component simulation using parameters obtained by fitting the X-band spectrum of the same solution.

	Gaussian	Lorentzian	log D _₂ / s ⁻¹	Log D / s ⁻¹	Relative
	Linewidth / mT	Linewidth / mT			contribution
"Fast"	0.2198	0.0000	9.5476	9.6372	1.0000
"Slow" A	0.2682	0.4919	7.1023	7.4527	6.5881
"Slow" B	0.6356	0.3140	7.9136	8.4558	6.3433

Table S1a: Optimised parameters for nitroxide components of X band EPR spectrum of labelled PEG_{2000} -Tyr₆ micelles at 20 °C

Table S1b: Optimised parameters for nitroxide components of X band EPR spectrum of labell	ed
PEG ₂₀₀₀ -Tyr ₆ gel	

	Gaussian	Lorentzian	Log(D ₂ / s ⁻¹)	Log(D / s ⁻¹)	Relative
	Linewidth / mT	Linewidth / mT			contribution
"Fast"	0.2116	0.0169	9.3478	9.4372	1.0000
"Slow" A	0.3732	0.1060	7.0551	7.5709	6.5185
"Slow" B	0.9312	0.0416	7.8551	8.2275	4.9886

Figure S4a: DLS measurements of sealed 10 mg/ml PEG_{2000} -Tyr₆ sample before (1), after 30 (2) and 60 (3) seconds of heating at 65 °C

Figure S4b: Change in average particle size (hydrodynamic radius) upon heating a PEG_{2000} -Tyr₆ 10 mg/ml sample to 65 °C

Figure S5: Comparison of EPR spectra of PEG_{2000} -Tyr₆ micellar solution: fresh solution (red) and a micellar solution obtained from the polymer that formed a gel at 60 °C, the gel was dissolved in methanol, solution was evaporated and dry polymer redispersed in water (black).

Figure S6: UV/vis absorbance spectra for PEG_{2000} -Tyr₆ 5 mg/ml micelle and gel samples.

Figure S7. EPR spectrum of PEG_{2000} -Tyr₆ in methanol is dominated by the fast-tumbling component suggesting that the copolymer aggregation in this solvent is at least partially suppressed.