Supplementary Material

Catalysis effect on the CO₂ methanation using MgH₂ as hydrogen portable medium

G. Amica*a, b, S. Rozas Azcona^c, S. Aparicio^c, F. C. Gennari^{a, b}

^a Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Atómico Bariloche (CNEA), Av. Bustillo 9500, R8402AGP +S.C. de Bariloche, Río Negro, Argentina

^b Universidad Nacional de Cuyo (Instituto Balseiro), Centro Atómico Bariloche (CNEA), Av. Bustillo 9500, R8402AGP S.C. de Bariloche, Río Negro, Argentina

^c Department of Chemistry, University of Burgos, Burgos, 09001, Spain

Calculation procedure S1: Methane yield calculation procedure and numerical examples

Trough GC experiments the molar amount of gaseous CH₄ was quantified using a calibration curve which relate the obtained experimental area with the corresponding molar percentage of CH₄ in the sample. After the reaction occurs, the total pressure (P_{total}) inside the reactor can be measured. As the CH₄ molar fraction (x_{CH4}) was determined, its partial pressure (P_{CH4}) can be obtained. Considering the volume of the reactor, the moles of CH₄ (n_{CH4}) in the mixture at ambient temperature (T_{amb}) can be calculated as follows: $n_{CH4} = x_{CH4}$. P_{total} . $V_{reactor} / R$. T_{amb}

Methane yield (%) was considered to be the ratio between the produced CH_4 moles (n_{CH4}) and the total CO_2 moles at the beginning of the reaction (n_{CO2}). 100.

The total CO_2 moles at the beginning of the reaction (n_{CO2}) are determined at the starting of the experiment based on chosen H_2 :CO₂ ratio. The amount of solid sample remained constant (100 mg) for all the experiments and provided the required H_2 . To obtain a 2:1 ratio 1.9 .10⁻³ moles of CO_2 are required, whereas for a 4:1 ratio 9.5 .10⁻⁴ moles of CO_2 are initially introduced in the

reactor.

V_{reactor}= 0.00982 |

T_{amb}= 298 K

R= 0.082 lt.atm/mol.K

	Temperature MgH ₂ :CO ₂ Reaction time	Molar percentage of CH ₄ (%)	X _{CH4}	P _{total} (atm)	Р _{сн4} (atm)	n _{CH4}	n _{co2}	CH₄ yield (%)
Example 1	400 4:1 24 h	17.8	0.178	5.63	1.002	4.028.10 ⁻³	9.5 .10 ⁻⁴	42.4
Example 2	400 2:1 5 h	6.8	0.068	2.99	0.203	8.17.10 ⁻⁵	1.9 .10 ⁻³	4.3

Figure S1: Raman spectrum of MgH_2 after thermal treatment with CO_2 at 400°C for 24 h (molar ratio of 2:1).

Figure S2: XRPD pattern of MgH_2 after thermal treatment with CO_2 at 350°C for 24 h (molar relation of 2:1).

Figure S3: Solid-state FTIR profiles for the as milled MgH_2 -10%Co and after thermal treatment (400°C, 5 and 24h) under CO₂ (molar relation of 4:1).

Figure S4: Raman spectra of MgH_2 -10%Co after reaction with CO_2 considering different experimental conditions.

Figure S5: XRPD pattern of the sample MgH_2 -10%wt Co with a molar ratio MgH_2 :CO₂ of 4:1 (Co milled during the last 10 minutes).

Figure S6: XRPD profile of the sample MgH_2 -10%wt Co after thermal treatment under CO2 at 350°C, 24 h (molar ratio MgH_2 :CO₂ of 2:1).

Table S1: Gas-phase composition determined by gas chromatography analyses of the
MgH ₂ -10wt % Co sample at 300°C.

Reaction	Molar percentage	Molar percentage	Molar percentage	Molar	CH₄ yield
time	of CH_4	of CO ₂	of CO	percentage of H_2	
(h)	(%)	(%)	(%)	(%)	(%)
24 h	0,8	70.1	28	1.1	0.7

Figure S7: XRPD profile of the sample MgH₂-10%wt Co at 300°C with a molar ratio MgH₂:CO₂ of 4:1.

Figure S8: Equilibrium composition (mol%) as a function of pressure at 450 °C for a molar ratio MgH_2 :CO₂ of 4:1 (A) and 2:1 (B).

Figure S9: Equilibrium composition (mol %) as a function of temperature at 1bar for molar ratio MgH_2 :CO₂ of 2:1.