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A Particle ζ potential measurements using ZetaSizer
The ζ potentials of all colloidal particles used in the experiments (PS-plain, PS-fluo, and PS-amine) are meas-

ured using a ZetaSizer Nano Series (Malvern Instruments, UK). Beforehand, the colloidal particles are sonicated
(Branson 2800) and diluted in deionized water (1:10000), followed by their insertion inside a zeta cell (DTS1070).
The measurements are performed in triplicate. We determine the ζp for PS-fluo, PS-plain, and PS-amine particles
as a function of Csalt . The results are presented in the Fig. 1.
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Figure 1: Plot of ζp for PS-fluo ( ), PS-plain ( ), and PS-amine ( ) as function of Csalt obtained using the Zetasizer.

All three curves exhibit a sigmoidal pattern where there is minimal change at low salt concentrations, followed
by a transition, then a constant value at high salt concentrations.

PS-amine exhibits a slightly positive charge due to the amine molecules grafted onto the surface. Thus, ζp has
a smaller value at high ionic strengths and increases positively at lower ionic strengths.

Both PS-plain and PS-fluo exhibit negative surface charges and thus ζp has a lower value (in terms of mag-
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nitude) almost close to zero at high ionic strengths while ζp becomes increasingly negative at lower ionic strengths.
PS-fluo has a higher surface charge density due to the carboxylate anions. This explains why the ζp for PS-fluo is
more negative than that of PS-plain, which is not specifically functionalized.

From our experimental measurements, we find that the ζp value decreases slowly at low salt concentrations.
In some cases, such as PS-plain, the ζp value does not vary significantly within two orders of magnitude of low salt
concentration.

B Information on numerical simulations
As mentioned in the main manuscript, we perform simulations by expressing the advection-diffusion equation

in terms of Langevin equations [1, 2, 3, 4] of the form:

ṙi(t) =
DiFi

kT
+∇ ·Di +U(ṙi)+∆(t) (1)

where ṙi is the vector position of the ith particle with respect to time, Di is the anisotropic diffusion, Fi is the
total force acting on the particle, k is the Boltzmann constant, T is temperature, U is the contribution of the flow
to the particle speed, and ∆(t) takes into account the random Brownian displacement, equivalent to

√
2Dτ . In

non-complex geometries, such as a straight rectangular channel, these quantities are documented in literature. The
time derivatives are replaced by a first order discretization. Ideally, τ (simulation time step) should be as small as
possible. However, taking an even smaller value of τ greatly increases computing times. In practice, the values we
take for τ range between 0.5 ·10−6 s and 1.5 ·10−5 s, which are well below the characteristic times of the problem.
We verify that the results are insensitive to the particular value of τ taken within this range.

The Lagrangian approach also makes it easier to compute the Langevin equation, i.e. determining particle
trajectory by writing that particle speed is equal to the force applied on it times its mobility [5, 6]. Thus, by
applying these general equations to the particular geometry we consider, i.e. long shallow channels with rectangular
cross-sections, where geometry is invariant in the y direction, we obtain the following:

ẋ(t) = γ(z)U(z)+βx(z)δ (t) (2)

ż(t) = βz(z)δ (t)+
dβz

dz
D+βz

D
kT

(FvdWz +Felz) (3)

where ẋ(t) and ż(t) are vector positions of the particle with respect to time respectively in the x (along the length
of the channel) and z (along the height of the channel) directions. The ẋ component of the particles, moving along
the channel length, have a unidirectional flow speed, scaled by γ . The trajectory along x has a correction factor,
βx, expressing confinement of the particle diffusion coefficient [6]. The ż component of the particles expresses
the trajectory along z dimension with a diffusion component, whose correction factor, βz, changes with particle
distance with respect to the wall.

The expressions for ẏ(t) and βy convey similar forms [6, 7] respectively to that of ż(t) and βz but is ultimately
negligible since we only consider the trajectories of the particles along x (length) and z (height), i.e. we analyze the
deposition on the channel ceiling and floor, at z± h

2 , and neglect the particles on the sidewalls.
In the following subsections, we provide a description of each of the terms in Eq.2 and Eq.3.

B.1 Calculation of γ

The parameter γ introduces the ratio between average flow speed and the particle speed near the wall when
z≈ r [7, 8, 9]:

γ(η) =
Up(z)

Ur
(4)

where where Up(z) is the average flow speed of the Poiseuille profile, Ur =
6Qr
wh2

(
1− r

h

)
is the flow speed at z ≈ r,

whre r is particle radius. The parameter γ(η) has the following expression as function of η , where η = z−r
r . For

η > 1,

γ(η) = 1− 5
16η3 (5)

for 10−4 < η < 1,

γ(η) =
1

η +1
exp(0.68902+ log(η)+0.072332log2(η)+0.0037644log3(η)) (6)
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for η < 10−4,

γ(η) =
0.7431

0.6376−0.2log(η)
(7)

We introduce the coordinate:
η =

∫
η

0
ηγ(η)dη (8)

In the case where van der Waals interactions dominate, for example, where z− r (and thus η) is relatively small,
this solution is not convenient to use, instead opting for an approximate solution by treating γ(η) as a constant,
γ(η)∼ γ∗. With this approximation, we obtain:

η ≈ γ∗

2
η

2 (9)

Comparison between the approximate (Eq.8) and the exact solutions (Eq.9), same as in Ref. [7], show that by
treating, for example, γ∗ = 0.7, the approximate solution is barely indistinguishable from the exact one within a
given range of η between 10−3 and 1 (Fig.2). In physical terms, this corresponds to 2.5nm and 2.5µm. Simulations
show that below 2.5nm, all of the particles immediately adsorb to the wall, and consequently, the error made on the
speed of deposition does not impact significantly the final position of the particle, nor the time it takes for getting
adsorbed to the wall.
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Figure 2: (a) Comparison, on a log log plot, between the approximate expression η = γ∗

2 η2 with γ∗ = 0.7 and the exact solution η =∫ η

0 ηγ(η)dη . (b) Plot of the difference
∫ η

0 ηγ(η)dη− γ∗

2 η2 as a function of η .

B.2 βx and βz
The parameters βx(z) and βz(z) are dimensionless functions expressing the dependence of the longitudinal and

transverse particle diffusion coefficients with z, the initial position of the particle with respect to the wall. From
literature, the expressions for βx and βz are as follows [6, 3, 8, 9]:

βx = 1− 9
16z

+
1

8z3 −
45

256z4 −
1

16z5 (10)

βz =
6z2−10z+4
6z2−3z−1

(11)

B.3 δ (t)
As the particles move in the direction of the channel length, x, δ (t) is a zero mean step random function with

amplitude
√

2Dτ , where τ is the discrete incremental step used to calculate the trajectories. The parameter δ (t) is
an analogue to ∆(t) in Eq.1. This parameter is in fact well-established [10] to take the Brownian movement into
account. This makes the equation stochastic and as a result very difficult to solve, except in the case where this
term can be neglected.
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B.4 Contribution of other forces
The bulk diffusion coefficient of the particles is represented by the Stokes-Einstein coefficient, D, while F is

the force acting on the particle, comprising of two components: van der Waals, FvdWz, and electrostatic forces, Felz.
Both forces act on the z direction, perpendicular to the wall.

FvdWz =−
Ar

6(z− r)2 and Felz =
χ

λD
exp
(
−z− r

λD

)
(12)

The Hamaker constant, A, defines the strength of the surface interactions and can be affected by significant surface
roughness [11]. We only consider Hamaker constant values where A > 0. The parameter χ is a dimensionless
function showing the product of the ζ potential values:

χ = 4πεε0ζwζpr (13)

in which ε , ε0 are respectively the relative dielectric constant of the fluid transporting the particles and the per-
mittivity of free space, ζw and ζp are respectively the zeta potentials of the channel wall and the particle, and r is
particle radius. Here, we consider both conditions where χ > 0 (repulsive charges or similar ζ signs) and χ < 0
(attractive charges or opposite ζ signs).

The parameter λD is the Debye length, (also expressed as κ−1), which for a monovalent salt follows [12]:

λD = κ
−1 =

√
εε0kT

2(NAvo)e2I
(14)

where NAvo is Avogadro’s number, e is the elementary charge, and I is the ionic strength (mol/m3) equivalent to salt
concentration in molarity, Csalt .

B.5 Contribution of surface roughness

A = 1.1 · 10�21 J

A = 8 · 10�21J with 24nm of roughness

Figure 3: (a) Numerical simulation results of NA(t) for A= 1.1 ·10−21 J, which provides the same result as A= 8.0 ·10−21 J with Rq = 24nm.

Surface roughness, Rq, affects surface interactions. Notably, it has been shown [13, 11] that Hamaker constants
can vary with a certain degree of surface roughness but are often complex to analytically describe. Hence, surface
roughness is usually characterized using AFM. In the theoretical analysis in the main manuscript, we did not
introduce any surface roughness effect. This could have been done by modifying extensively the expression of the
van der Waals forces but owing to simplicity, we did not do it. In the numerical simulations, however, the roughness
effect can be gauged by incorporating it into the particle-surface distance, z, thereby resulting to a total effective
particle-surface distance of z+Rq.

Take for example PDMS and unfunctionalized particles (PS-plain), in which both are considered smooth or
with negligible roughness, the Hamaker constant for this interaction was determined to be A = 8.0 ·10−21 J [7, 5,
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14]. If we keep PDMS as the surface and change the particles from PS-plain to PS-fluo, we know that the Hamaker
constant for this interaction was experimentally measured to be A = 1.1 · 10−21 J. Using this A value agrees well
with simulations. Moreover, in the simulation for this case, Rq was set to 0 since we presume that any obtained A
value from the experiments already takes into account the effect of any roughness.

Furthermore, in Fig. 3, we find that the simulation results for A = 1.1 ·10−21 J (red circles) is also equivalent
to the results of A = 8.0 · 10−21 J but with an additional 24 nm surface roughness (blue circles). In this regard,
this suggests that the functionalization of PS-fluo adds a roughness value that changes the Hamaker constant from
A = 8.0 ·10−21 J to an effective value of A = 1.1 ·10−21 J .

B.6 Glossary of parameters and constants used in the theory and simulation section

Table 1: Nomenclature

Symbol Definition
h channel height
w channel width
L channel length
C particle concentration in the advection-diffusion equation
Up average velocity based on Poiseuille profile
Ur flow velocity at distance z≈ r
ẋ vector position in the x direction
ż vector position in the z direction
γ ratio between Up/Ur
βx dimensionless function expressing dependence of longitudinal particle diffusion coefficient w.r.t wall
βz dimensionless function expressing dependence of transverse particle diffusion coefficient w.r.t wall
δ (t) zero mean step random function with amplitude,

√
2Dτ

τ incremental time step
D Stokes-Einstein diffusion coefficient of particle
A Hamaker constant
r particle radius
k Boltzmann constant
T temperature
χ dimensionless function showing product strength of ζw and ζp
ζw zeta potential of the microfluidic channel surface walls
ζp zeta potential of the colloidal particle surface
ε dielectric constant of the fluid
ε0 permittivity of free space
λD Debye length
NAvo Avogadro’s number
e elementary charge
Csalt salt concentration in molar units
I ionic strength in mol/m3 units
FvdWz van der Waals forces which act on the z direction perpendicular to wall
Felz electrostatic forces which act on the z direction perpendicular to wall
S collection factor
z0 position of the particle w.r.t wall following its exit trajectory
η dimensionless altitude, η = (z−r)

λD
,

but in definition of γ(η), η is also dimensionless altitude η = (z−r)
r

t time
P dimensionless parameter showing strength of van der Waals forces w.r.t Debye forces
σL dimensionless paramater equivalent to σL = DχL

γ0UrλDrkT
ξL effective Peclet number
Q flow rate (velocity × cross section)
ϕ experimental particle concentration
vp spherical volume of the particle
NA(t) number of adsorbed particles as a function of time
Svdw theoretical expression of S when van der Waals forces dominate (at high ionic strengths)
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C Numerical simulations of ζw and ζp for repulsive charges

(a)

(b)

Adsorption

(S/Svdw = 1)

case where 𝐹𝑒𝑙 = 0 

(only vdW)

Non adsorption 

(S/Svdw = 0)

case where 𝐹𝑒𝑙 = 0 

(only vdW)

Figure 4: (a) Simulation results based on Langevin equations with adhesion and electrostatic forces. In the case of repulsive charges,
results are binary, i.e. deposition/adsorption ( ) or no deposition/adsorption ( ). When S/Svdw = 1, the simulation results agree with the
theoretical expression, which has been calculated at conditions of high ionic strengths where van der Waals forces control deposition and
electrostatic contributions are inexistent. When S/Svdw = 0, the simulation results do not agree with the theoretical expression, mainly
because simulation results show that particles are repelled from the surface. This happens at lower salt concentrations. (b) Some examples
of different combinations of ζp and ζw for a a certain salt concentration. (b, left) 0.01 M NaCl and (b, right) 0.1M NaCl. Blue and red
regions represent deposition and no deposition, respectively.

We perform numerical simulations based on Langevin equations and generate a phase diagram of ζp and ζw

combinations. In this case, for repulsive charges, both ζw and ζp have the same sign. The sign is negative (-) for
both to mirror that of the typical surface charge under aqueous conditions.

As described, we perform numerical simulations of particle deposition on the microchannel surface taking
into account contributions of the different forces such as adhesion (vdW) and electrostatic (Debye). Generally, at
a given Csalt , there is a certain ζp and ζw. However, depending on the type of particle or channel wall surface,
we can also have various combinations of both ζ potentials. In these simulations results shown in Fig. 4, we
demonstrate different combinations of ζp and ζw, where results seem to be binary, i.e. deposition/adsorption ( )
or no deposition/non-adsorption ( ). This binary result also explains why S/SvdW is either 0 or 1. When S

Svdw
= 1,

this means that the S value obtained from simulations is equivalent to the theoretical expression, Svdw, represented
by the solid red line in Fig. 4(a, left). This is the theoretical prediction at high salt concentration, typically at
concentrations ≥ 0.1 M NaCl, where deposition is controlled by van der Waals-adhesion forces and electrostatic
forces, Fel ≈ 0.

When S
Svdw

= 0, this means that the S value from simulations is zero as in Fig.4(a, right), i.e. particles are
repelled from the surface and thus there is no deposition.
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For reference, S is from Eq.16 and Svdw is from Eq.13 in the main manuscript.
Results in Fig. 4(b) show that for a wide range of values, the deposition result does not change significantly,

i.e. the particles are either attracted ( ) to or repelled ( ) from the surface. In this example, both ζw and ζp possess
the same sign (repulsive charges).

Two examples are given in the figure: 0.01M NaCl in Fig. 4(b, left) and 0.1M NaCl in Fig. 4(b, right). In
both cases, any combination of ζp and ζw that falls within the red zone means that both surface charges repel each
other. Hence, the particle does not deposit onto the surface. For example, at 0.1M NaCl, a ζw = −15mV and
ζp =−30mV combination would yield no deposition. However, a combination ζw =−20mV and ζp =−5mV will
result to deposition.

We have also evaluated literature data (e.g. in Ref. [15, 16]) on ζp and ζw combinations and the results indeed
fall within the shaded region.
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D Numerical simulations of ζw and ζp for attractive charges
We perform additional numerical simulations based on Langevin equations (see Theory and Simulations sec-

tion in main manuscript; see also Ref. [7, 5, 14]) and generate diagrams of ζp, ζw, and S/Svdw combinations. In this
case, for attractive charges, both ζw and ζp have the opposite sign.

As described in the main manuscript, we perform numerical simulations of particle deposition on the mi-
crochannel surface taking into account contributions of the different forces such as adhesion (vdW) and electro-
static (Debye). At a given Csalt , we have already experimentally determined ζp from ZetaSizer measurements (see
SI-A).

Knowing the value of ζp and keeping it constant, we vary ζw over a wide range (from -100 mV to +100 mV).
We further extend the analyses by performing more simulations at two additional (hypothetical) ζp values. Sim-
ilarly, we keep these hypothetical ζp values constant while also varying ζw over an identical range (-100mV to
+100mV). Results are shown in Fig. 5 (PS-fluo and APTES-treated PDMS) and Fig. 6 (PS-amine and plasma-
treated PDMS).

The results in Fig. 5 show simulations for PS-fluo (-) on APTES-treated walls (+), taking into account A =
1 ·10−21J, as determined experimentally.

Results in Fig. 5 reveal a sigmoidal pattern, where at (-) values of ζw, S/Svdw = 0. This is expected since the
particle, PS-fluo, has a negative charge. Thus, two negative surface charges result to repulsion. There is a transition
value at low ζw values, followed by a plateau. Simulations show that for wide range of (+) ζw values spanning
approximately two orders of magnitude, from ∼ +1mV to +100mV, the value of S/Svdw does not significantly
change. For example, at 0.01M NaCl (Fig.5(c)) and ζp = −44mV (red circle), a ζw value of either ζw = +18mV
or ζw =+100mV, yields approximately the same value for S/Svdw ≈ 1.5.

In the case of attractive charges, S/Svdw ≈ 1 only at higher salt concentrations, 0.1M NaCl (Fig. 5(d)) and 1M
NaCl (Fig. 5(e)). For lower ionic strengths, S/Svdw >> 1, as also predicted by our experiments. The qualitative
trend of increasing deposition at low ionic strengths agrees with experiments, although there is disparity between
the actual quantitative values at low salt concentrations (see Experiments: attractive charges section in main ma-
nuscript). Our experiments generally predict a smaller S/Svdw value, probably due to the fact that the simulation
does not take into account interparticle interactions once the experiment saturates (too many particles that result to
aggregation)

The results in Fig. 6 show simulations for PS-amine (+) on hydrophilic plasma-treated walls (-), taking into
account A = 0.4 ·10−21J, as determined experimentally.

Results in Fig. 6 also reveal a sigmoidal pattern but in reverse, where at (+) values of ζw, S/Svdw = 0. This
is expected since the particle, PS-amine, has a positive charge. Thus, two positive surface charges also result to
repulsion. There is a transition value at low negative ζw values, followed by a plateau at increasingly negative ζw

values.
Simulations show that for wide range of (-) ζw values spanning approximately from ∼ −1mV to −100mV,

the value of S/Svdw does not significantly change. For example, at 0.001M NaCl (Fig.6(b)) and ζp =+6.8mV (red
circle), a ζw value of either ζw =−25mV or ζw =−100mV, yields approximately the same value for S/Svdw ≈ 5.

Similar to the previous case for attractive charges, S/Svdw ≈ 1 only at higher salt concentrations, 0.1M NaCl
(Fig. 6(d)) and 1M NaCl (Fig. 6(e)). For lower ionic strengths, S/Svdw >> 1, as also predicted by our experiments.
Similarly, the qualitative trend of increasing deposition at low ionic strengths agrees with experiments, although
there is still disparity between the actual quantitative values at low salt concentrations.
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Figure 5: Simulation results based on Langevin equations with adhesion and electrostatic forces for PS-fluo and APTES-treated wall, where
surface charges have opposite signs. (a) Results at 0.0001M NaCl. (b) Results at 0.001M NaCl. (c) Results at 0.01M NaCl. (d) Results
at 0.1M NaCl. (e) Results at 1M NaCl. In (a-e) ( ) are the experimental ζp values obtained from the ZetaSizer, while ( ) and ( ) are
two hypothetical ζp values at ζp =−10mV and ζp =−100mV respectively. However, in (e) ( ) and ( ) are two hypothetical ζp values at
ζp =−50mV instead and ζp =−100mV respectively.
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Figure 6: Simulation results based on Langevin equations with adhesion and electrostatic forces for PS-amine and plasma-treated wall,
where surface charges have opposite signs. (a) Results at 0.0001M NaCl. (b) Results at 0.001M NaCl. (c) Results at 0.01M NaCl. (d)
Results at 0.1M NaCl. (e) Results at 1M NaCl. In (a-e) ( ) are the experimental ζp values obtained from the ZetaSizer, while ( ) and ( )
are two hypothetical ζp values at ζp =+50mV and ζp =+100mV respectively.
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E Experimental and numerical results for NA(t) at different ionic strengths for
attractive charges
We perform numerous comparisons of experimental and numerical results, in which some examples are shown

in Fig. 7 for the number of particles adsorbed as a function of time, NA(t) at different salt concentrations.

N
A
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)

time (s)

1M

10-5 M

0.1M

10-2M

10-3M

(a) (b)

N
A
(t

)

time (s)

1M

10-5 M

0.1M

10-2M

10-3M

OBS: To add in the description of Figure in Supp D: For (a) Zw used for calculation of 1-10-2M was 1 mV, for 10-3-10-5 was 25 mV; For (b) Zw used for 
calculation of 1-10-2M was -1 mV, for 10-3-10-5 was -10 mV

*10-4M *10-4M

Figure 7: Simulation and experimental results of NA(t) at different salt concentrations during initial seconds of deposition. (a) Results for
PS-fluo on APTES-treated wall, where A = 1.1 · 10−21 J, r = 2.4µm, U = 8mm/s, ζp varies accordingly to the graph in Fig.1 (SI-A), and
ζw = +1mV for 10−2M to 1M NaCl, ζw = +25mV for 10−3M to 10−5 M NaCl. (b) Results for PS-amine on plasma-treated wall, where
A = 0.4 · 10−21 J, r = 2.4µm, U = 8mm/s, ζp varies accordingly to the graph in Fig.1 (SI-A), and ζw = −1mV for 10−2M to 1 M NaCl,
ζw =−10mV for 10−3M to 10−5 M NaCl.

At high salt concentrations, surface charges are screened so their magnitudes are typically smaller while at
lower salt concentrations, the magnitude of the charges are larger. From simulations concerning different ζw values
(SI-C and SI-D) for these two different surface treatments, it appears that from a certain value, any further increase
in the magnitude of the ζw no longer has a significant effect on the number of adsorbed particles since the curve of
S/Svdw begins to plateau.
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