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I. SIMULATIONS

A. Simulation conditions

All simulations were performed using GROMACS 2016.4 [1, 2] along with the CHARMM-36 all-atom force-field [3]
(June 2015 version). A lipid bilayer made of 106 lipid molecules per leaflet, each containing 130 explicit atoms,
was created using CHARMM-GUI [4–7]. It was hydrated with two 8 nm thick water layers on each side (connected
through periodic boundary conditions), using the TIP3P water model, for a total of 29826 solvent molecules. The
force field parameters for DPPC molecules were provided directly by CHARMM-GUI [8, 9].

The above system was first subject to energy relaxation using steepest descent energy minimization, followed by a
10 ps NVT thermalization stage at 288 K. Then, the bilayer was subject to a 1 ns NPT equilibration run coupled to a
semi-isotropic barostat (1 bar in all directions). The system was then further equilibrated at the desired temperature
with the same semi-isotropic barostat during a second NPT equilibration step of 10 ns. Molecular dynamics production
runs of 50 ns were finally generated at the same temperature and with the same semi-isotropic barostat. The analysis
were performed on the last 25 ns of simulations. All time steps were set to 2 fs.

All the molecular dynamics simulations used the leap-frog integration algorithm [10]. Temperature and pressure
were kept constant using respectively a Nosé-Hoover thermostat [11, 12] (correlation time τT = 0.4 ps) and a Parrinello-
Rahman semi-isotropic barostat [13, 14] (correlation time τP = 2.0 ps, compressibility 4.5× 10−5 bar−1).

Lipid and water molecules were separately coupled to the thermostat. Following GROMACS recommendations for
the CHARMM-36 all-atom force field, a Verlet cut-off scheme on grid cells was used with a distance of 1.2 nm, and
non-bonded interactions cut-offs (Van der Waals and Coulombic) were also set to 1.2 nm. Fast smooth Particle-Mesh
Ewald electrostatics was selected for handling the Coulombic interactions, with a grid spacing of 4 nm. A standard
cut-off scheme with a force-switch smooth modifier at 1.0 nm was applied to the Van der Waals interactions. We did
not account for long range energy and pressure corrections, and constrained all the hydrogen bonds of the system
using the LINCS algorithm.

B. Nature of the gel phase

Whenever a large system (212 lipids or more) was simulated at low temperature, either starting from a molecular
builder configuration (Charmm-gui), or resulting from the annealing of a high temperature configuration, a structure
showing a longitudinal corrugation in the x and y direction was obtained (Fig. S1 right). As many other authors
before, we think that this structure could actually be reminiscent of the experimental Pβ′ DPPC ripple phase [15–17],
see also [18]. In this work we refer to this corrugated phase as a disordered gel phase to distinguish it from the
flat, tilted chains, Lβ′ structure.

On the other hand, simulations of small systems made of 64 lipids each show much less corrugation, and looks
closer to a flat tilted Lβ′ [19] gel phase. The same holds if the 64 lipids system originates from a slow cooling of the
high temperature phase. Figure S2 summarizes the various pathways leading to either a disordered, or a flat tilted
structure.

The stability of the disordered gel phase was challenged by putting the system in contact with an anisotropic
barostat (3 independent axis, same pressure) for 50 ns at 288 K in order to remove any box induced residual stress.
The ripple phase was not perturbed except but a 6% change in the box lateral size. For all practical purposes, the
bilayer behaves mechanically as a solid (fluid bilayers display large box size fluctuations when subject to an anisotropic
barostat).

In addition, the ripple phase was put under tension, both under anisotropic and semi-isotropic barostat conditions,
imposing a 10 mN/m stretching condition during 50 ns at 288 K. The longitudinal instability persisted and no tilted
Lβ′ emerged. The stresses and box sizes obtained at low temperature (288 K) are given in Table I.

The outcome of these ”stress-tests” was that the disordered gel phase shows robustness and metastability (e.g.
apparent stability without evidence of thermodynamic stability). Meanwhile, it is possible to duplicate a 64 lipids
tilted flat configuration, and simulate it at low temperature (Fig. S2). The resulting 256 lipids solid phase also showed
(meta)stability within accessible simulation times. However, once this system was heated and melted, the flat tilted
configuration could not be recovered under quenching, or cooling. Only the disordered gel structure seems to be
spontaneously favored upon system cooling, and reversible temperature cycling.

We therefore considered that the disordered ”ripple-like” gel phase was indeed our low temperature reference phase,
and performed the training and analysis on it.
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FIG. S1. Snapshots of bilayer configurations in the fluid (left) and disordered gel (right) phase, with periodic boundary
conditions (box).

FIG. S2. Synopsis of the conditions allowing for the emergence of a disordered gel (large system, bottom row) or tilted gel
(small system 64 lipids, top row and replication of the small system, middle row). The tilted lipid structures does not show up
spontaneously if the number of lipids is larger than 64, and can only be found by replicating a small system.
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II. SYSTEM ANALYSIS

A. Determination of structural parameters

Values of the average area per lipid Al and order parameter Smol of the bilayer were respectively obtained using
the GROMACS built-in commands gmx energy and gmx order.

For measurements of individual lipid properties (area, order parameter, elongation), atom positions were collected
from trajectories using the Python 3 MDAnalysis module [20, 21]. The individual areas per lipid were obtained from
Voronoi tessellations of the two-dimensional projections of the lipid center of masses, computed using the Voro++
library [22]. The individual volumes per lipid were derived from three-dimensional tessellations of the lipid centers of
mass, again using the Voro++ library. Note that the bilayer geometry requires a specific tessellation procedure: this
was done by introducing ghosts lipids in the water regions. Without these ghost lipids, the tessellation cells cannot
be correctly defined and are unbounded across the membrane-water interface, thus overestimating significantly the
individual volume per lipid. Ghosts lipids are mirror images of bilayer lipids across the local lipid-water interface (cf.
Fig. S3). After the tessellation was made, ghost lipids described in the previous section and their corresponding cells
were removed the lists, and only the volumes of physical lipids were collected and analyzed.

The molecular order parameter Smol of individual lipids was calculated by measuring, for every NC − 2 = 14
non-terminal carbon atoms k = 2 . . . 15 of the 2 tails of the lipids, the angle formed between the z-axis of the system

directed along ~uz and the vector
−−−−−−−−−−−→
C(j,k−1)C(j,k+1) defined by the carbon atoms surrounding atom k within the same

tail j = 1, 2. The order parameter Smol,(j,k) of the atom k is obtained from the 2nd Legendre polynomial P2 using

cos(θ(j,k)) = ~uz ·
−−−−−−−−−−−→
C(j,k−1)C(j,k+1), and averaging over j and k:

Smol =
1

2(NC − 2)

2∑
j=1

NC−1∑
k=2

1

2

(
3 cos(θ(j,k))

2 − 1
)

(1)

B. Next-nearest neighbors statistics

After completion of the 3d Voronoi tessellation using Voro++, a list of next-nearest neighbors was established for
each lipid center of mass. We also collected the areas of the polygonal surfaces separating each pair of neighboring
Voronoi cells. The ghost lipids and their corresponding faces were removed from the lists. The neighbor lists were
further curated by removing all the neighbor pairs for which the corresponding face area accounted for less than 1%
of the total surface area of each Voronoi cell in contact. The number of next-nearest neighbors were finally counted
to build the coordination statistics (ng, nf ), where each lipid molecule has ng gel and nf fluid neighbors.

III. COMPARISON BETWEEN MACHINE LEARNING DECISIONS AND STRUCTURAL
CHARACTERIZATIONS OF THE LIPID CONFIGURATIONS

Machine Learning predictions were compared to two typical lipid structural properties: the carbon carbon (CC)
order parameter Smol along the chains and the area per lipid A in the 2d Voronoi tessellation of the lipid projected
centers of mass. The corresponding results are presented in Fig. S4(a) and (b).

The order parameter curves (Fig. S4(a)) clearly discriminate among the low temperature (288 K) and high tem-
perature (358 K) fluid phases, in agreement with published results on these systems [23].

Simulation Stress xx Stress yy Box x Box y
(1) -6 8 7.2 7.2
(2) 0.8 1 7.0 7.4
(3) -21 -18 7.5 7.5
(4) -20 -20 7.4 7.6

TABLE I. Mechanical resistance of the low temperature phase (288 K). Simulation conditions: (1) tensionless semi-isotropic
barostat, (2) tensionless anisotropic barostat, (3) under tension semi-isotropic barostat, (4) under tension anisotropic barostat.
Stress xx: virial stress in the x direction in bars. Stress yy: virial stress in the y direction. Box x: lateral x box size in nm.
Box y: lateral y box size.
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FIG. S3. Comparison of 3-dimensional Voronoi tessellations of a lipid bilayer configuration (A) without and (B) with ghost
lipids. Without ghost lipids, most cells are unbounded, with infinite volume, due to the absence of particle on the opposite side
of the water-membrane interface. As a practical solution of this problem, ghost lipids are added to the data set, mirroring the
lipid center of mass positions. The resulting cells for lipids inside the bilayer display a realistic volume and shape, accounting
for the water interface in a natural way.

The order parameter of the atoms in the lipid tails at low (288 K) and high (358 K) temperature is characteristic
from membranes in the gel and fluid phases respectively [19]. The phase transition can be clearly seen in Fig. S4(b)
as a significant variation in the evolution of the area per lipid Al around 321 K.

Experimental structural values are available at 323 K [24–27]. Nagle et al. obtained for DPPC an area per lipid
equals to 64 ± 1 Å2 significantly close to the value circa 60 Å2 we obtained in our simulations. Using the average
DPPC bilayer thickness reported by Nagle et al., we could estimate an experimental volume per lipid of 1220 ± 50 Å3,
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FIG. S4. Confirmation of the thermodynamic phase of the bilayer using two common structural parameters: (a) the order
parameter Smol,(j,k) with k the atom number, j = 1 (tail sn1) or j = 2 (tail sn2), and (b) the area per lipid Al. (Left) the
average order parameter is shown as a function of the carbon atom index along the chain (from glycerol to terminal end), for
each sn1 and sn2 chain. (Right) the phase transition can be clearly seen in the evolution of the area per lipid as a function of
temperature. A sigmoid fit points to a transition temperature Tm equal to 321 K in our system.

which agrees fairly with our Voronoi value of 1300 Å3

IV. NAIVE CLASSIFICATIONS

The distributions of the areas per lipid and molecular elongations at low and high temperatures are shown in
Fig. S5. Using a naive classification scheme based on a single threshold value for either of the two previous scalar
parameters would at best result in a prediction accuracy of respectively 69% and 67%.

Fig. S6 compares the histogram of molecular order parameters Smol as a function of the temperature of the lipid
bilayer from which the configurations are extracted (288 K or 358 K), and as a function of the result of the Machine
Learning classification procedure. The difference between the distribution at 288 K and the distribution in the a
posteriori gel state ensemble indicates that a small fraction of lipids in the fluid state are already present at 288 K.
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FIG. S5. Distributions of the area per lipid (Left) and the average elongation between phosphorus and sn1 terminal carbon
atoms (Right) from lipids conformations at 288 and 358 K.
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