Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2020

Electronic Supplementary Information

Low-Temperature Decomposition and Segregation on a Surface in Carbide-Containing Solid Solutions of the Zirconium-Niobium-Carbon System and in Related Ternary Systems

Svetlana V. Rempel^{a,b} and Aleksandr I. Gusev^a

^a Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, Pervomaiskaya 91, Ekaterinburg 620990, Russia.

^b Ural Federal University named after the First President of Russia B.N. Yeltsin, Mira 19, Ekaterinburg, 620002, Russia.

E-mail: gusev@ihim.uran.ru

Calculation details

Dependence of the size of precipitated particles on the composition of the solid solution can be taken into account as follows: The minimal size of the precipitated particle of the impurity component is $D_{\min} = (\sqrt{2}/2)a$, i.e., $D_{\min B}(x=0) = (\sqrt{2}/2)a_B$ and $D_{\min A}(x=1) = (\sqrt{2}/2)a_A$. In the range $0.5 \le x \le 1$, when x decreases from 1 to x_b (the content of the impurity component A increases from 0 to $(1-x) \le (1-x_b)$), the size of the precipitated particles D_A increases to some limiting value and does not change with a further decrease in x from x_b to 0.5. Thus, to a first approximation, the change in the size of precipitated particles with changing composition in the range $0 \le (1-x) \le 0.5$ (or, which is the same, $0.5 \le x \le 1.0$) can be represented as

 $D_{A}(x) = D_{\min A} \{ [1 + m(1 - x)][1 - f_{H}(x - x_{b})] + [1 + m(1 - x_{b})]f_{H}(x - x_{b}) \},$ (S1) where x_{b} = const is the boundary content of the second component, corresponding to the limiting size of the particles of the precipitated phase; and $f_{H}(x - x_{b}) = \begin{cases} 1, \text{ if } x \le x_{b} \\ 0, \text{ if } > x_{b} \end{cases}$ is the Heaviside

function. Analogously, for the range $0 \le x \le 0.5$, in which component B is an impurity, we can obtain the symmetric expression for the size D_B of phase B:

$$D_{\rm B}(x) = D_{\rm min B}\{(1+mx)[1-f_{\rm H}(1-x-x_{\rm b})] + [1+m(1-x_{\rm b})]f_{\rm H}(1-x-x_{\rm b})\}, (S2)$$

where $f_{\rm H}[(1-x)-x_{\rm b}) = \begin{cases} 1, \text{ If } x \le x_{\rm b} \\ 0, \text{ if } > x_{\rm b} \end{cases}$. Inasmuch as component B is an impurity at x < 0.5 and

component A is an impurity at x > 0.5, the general equation for D(x) can be written as

$$D(x) = D_{\min A} \{ [1 + m(1 - x)] [1 - f_H(x - x_b)] + [1 + m(1 - x_b)] f_H(x - x_b) \} [1 - f_H(x - 0.5)] + [1 - f_H(x - 0.5)] \}$$

 $+ D_{\min B}\{(1 + mx)[1 - f_H(1 - x - x_b)] + [1 + m(1 - x_b)]f_H(1 - x - x_b)\}f_H(x - 0.5).$ (S3) In the formula (3), $D_{\min A}$ and $D_{\min B}$ are the minimum sizes of the precipitated particles; x_b is the boundary content of the second component; *m* is parameter characterizing growth rate of particles;

and
$$f_{\rm H}(x-0.5) = \begin{cases} 1, \text{ if } x \le 0.5\\ 0, \text{ if } x > 0.5 \end{cases}$$
.

	-	
Pseudobinary system	B_{0s} (kJ·mol ⁻¹)	B_{1s} (kJ·mol ⁻¹)
HfC - NbC	$-0.781 + 0.471 \times 10^{-3}T - 0.012 \times 10^{-6}T^2$	$15.000 - 1.436 \times 10^{-3}T + 0.031 \times 10^{-6}T^2$
HfC - TaC	$3.125 - 0.422 \times 10^{-3}T + 0.001 \times 10^{-6}T^2$	$18.806 - 0.893 \times 10^{-3}T$
ZrC _{0.98} - TaC	$9.885 + 0.291 \times 10^{-3}T - 0.001 \times 10^{-6}T^2$	$14.738 - 1.900 \times 10^{-3}T - 0.012 \times 10^{-6}T^2$
VC _{0.88} - TaC	$33.312 - 4.157 \times 10^{-3}T + 0.011 \times 10^{-6}T^2$	$-3.479 + 1.577 \times 10^{-3}T - 0.006 \times 10^{-6}T^2$
VC _{0.88} - NbC	$40.367 - 4.196 \times 10^{-3}T - 0.058 \times 10^{-6}T^2$	$-9.661 + 1.629 \times 10^{-3}T + 0.016 \times 10^{-6}T^2$

Table S1. Parameters B_{0s} and B_{1s} of mutual exchange energy $B_s = B_{0s} + xB_{1s}$ of the solid phase for carbide solid solutions of some pseudobinary $(ZrC_v)_{1-x}(NbC_{v'})_x$ systems