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Table S1. Experimental data used to test FEFF9 ability to simulate PdAu NPs.
Pd Concentration (at. %) Average particle size (nm) Support/Surfactant

83% 3.0 ± 0.6 Peptide R5
67% 3.3 ± 0.7 Peptide R5
50% 3.4 ± 0.7 Peptide R5
33% 3.8 ± 0.7 Peptide R5
25% 4.0 ± 0.7 Peptide R5
9% 6.0 ± 2.1 RCT-SiO2
2% 5.8 ± 1.4 RCT-SiO2
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Note S1. Details of ab initio calculation of XANES

As in our previous work, 1-4 we used FEFF95 for XANES simulations. The non-structural parameters for 

XANES simulations were chosen to ensure the best agreement between the simulated spectrum for bulk 

Au and Pd and the corresponding experimental XANES data. FEFF version 9.6.4 was used for self-

consistent calculations within full multiple scattering (FMS) and muffin-tin (MT) approximations. For Pd 

K-edge simulations, we use the complex Hedin-Lundqvist (HL) exchange correlation potential, cluster with 

radius 5.5 Å for self-consistent field (SCF) calculations, cluster of radius of 7 Å for FMS calculations, and 

S02 of 0.9, where the core-hole is treated with the random phase approximation (RPA). For Au L3-edge 

simulations, we use the partially nonlocal exchange model: Dirac-Fock model for core + HL model for 

valence electrons + a constant imaginary part exchange correlation potential (which is corrected by a 0.2 

eV shift of the Fermi level and a 0.5 shift to the optical potential), 3.1 Å cluster for SCF calculations, 7 Å 

cluster for FMS calculations, and S02 of 1.0, where the core-hole was treated with the final state rule 

(FSR).

Figure S1. Au edge training data: the absorbing site local composition (defined as the number of Au 

neighbors divided by the total number of metal neighbors). 
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Figure S2. Au edge training data for PdAu nanoparticles: the location of the absorbing atoms is described 

by the total number of metal neighbors (Au-M). Label “Bulk” corresponds to absorbing atoms inside the 

NP (coordination number (CN) for Au-M: CN(Au-M) = 12), while the CN(Au-M) < 12 corresponds to 

undercoordinated sites at the surfaces, edges, and corners.

Figure S3. Au edge training data for Au nanoparticles: the location of the absorbing atoms are described 

by the total number of metal neighbors (Au-M). Label “Bulk” corresponds to absorbing atoms inside the 

NP (coordination number (CN) for Au-M: CN(Au-M) = 12), while the CN(Au-M) < 12 corresponds to 

undercoordinated sites at the surfaces, edges, and corners.
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Figure S4. Pd edge training data: the absorbing site local composition (defined as the number of Pd 

neighbors divided by the total number of metal neighbors).

Figure S5. Pd edge training data for PdAu nanoparticles: the location of the absorbing atoms are described 

by the total number of metal neighbors (Pd-M). Label “Bulk” corresponds to absorbing atoms inside the 

NP (coordination number (CN) for Pd-M: CN(Pd-M) = 12), while the CN(Pd-M) < 12 corresponds to 

undercoordinated sites at the surfaces, edges, and corners.
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Figure S6. Pd edge training data for Pd nanoparticles: the location of the absorbing atoms are described 

by the total number of metal neighbors (Pd-M). Label “Bulk” corresponds to absorbing atoms inside the 

NP (coordination number (CN) for Pd-M: CN(Pd-M) = 12), while the CN(Pd-M) < 12 corresponds to 

undercoordinated sites at the surfaces, edges, and corners.

Note S2. Neural network training and validation

The Pd and Au absorber NNs were implemented and trained using Mathematica 12 using the NetGraph 

and NetTrain functions. The complete architectures are presented in Figs. S9 and S10. For the Pd absorber-

specific NN, the site-specific XANES calculations were aligned to a bulk Pd reference standard, and then 

interpolated to a 95 point non-uniform energy mesh that spanned energies from Emin = 24339.8 eV to Emax 

= 24416.6 eV with a step size of 0.6 eV for data points near the adsorption edge, which gradually increased 

up to 1.7 eV for points approaching Emax. Furthermore, a simulated bulk Pd spectra, also calculated by 

FEFF9, aligned to the bulk reference standard, and interpolated to the same mesh, was subtracted from 

each interpolated site-specific XANES spectrum. Finally, the energies and absorption coefficients were 

normalized between 0 and 1 using the commonly used min-max normalization procedure: 

. X is the training data input, min(X) is the smallest input, max(X) is 𝑍 = (𝑋 ‒ min (𝑋))/ (max (𝑋) ‒ min (𝑋))

the largest input, and Z is the normalized input. The target length 2 vector was composed of the first 

partial coordination numbers  and  as calculated from the atomistic models. Before training, 𝐶𝑃𝑑 ‒ 𝑃𝑑 𝐶𝑃𝑑 ‒ 𝐴𝑢

the partial coordination numbers were normalized between 0 and 1 using the min-max normalization. For 
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the Au absorber-specific NN, the site-specific XANES calculations were aligned to a bulk Au reference 

standard and then interpolated to an 83 point non-uniform energy mesh before use in training. The energy 

mesh spanned energies from Emin = 11917.8 eV to Emax = 11994.6 eV with a step size of 0.6 eV for data 

points near the adsorption edge, which gradually increased up to 1.7 eV for points approaching Emax. For 

the Au edge, bulk subtraction did not help minimize the validation loss, so it was not utilized. This was 

likely due to the Au L3-edge being less sensitive to the energy resolution effects as compared to the higher 

energy Pd K-edge. The target length 2 vector was composed of the first coordination numbers  and 𝐶𝐴𝑢 ‒ 𝐴𝑢

 as calculated from the atomistic models. Before being combined linearly to form synthetic data, 𝐶𝐴𝑢 ‒ 𝑃𝑑

the absorption coefficients, energy values, and coordination numbers were normalized between 0 and 1, 

again using min-max normalization. For training, we initialized the weights randomly, using the Xavier 

method.6 For the Pd absorber-specific NN, the validation cost function was minimized after training on 

405,248 synthetic examples with a batch size of 64 per training round. Training was stopped at the lowest 

validation loss. The validation cost function was minimized using the ADAM optimizer (with Epsilon = 

0.001, Beta1= 0.9, Beta2 = 0.99 and initial learning rate of 0.001) and a L2 Regularization of 0.001 was 

employed. For the Au absorber specific NN, training was stopped at the lowest validation loss, which 

occurred after training on 1,617,920 synthetic examples with a batch size of 64 per training round. 

Minimization was completed using the ADAM optimizer (with Epsilon = 0.001, Beta1= 0.9, Beta2 = 0.99 

and initial learning rate of 0.001) and a L2 Regularization of 0.001. The additional regularization methods 

(Dropout with a probability of 0.2 and Batch Normalization) helped to minimize the validation cost in the 

case of the Au absorber-specific NN, and so were included in the final architecture.
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Figure S7. The MSE loss vs. training round for A) The Au absorber specific NN and B) Pd absorber specific 

NN. Training is stopped at the validation minimum.
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Figure S8. The median absolute deviation in NN-XANES predictions of the coordination numbers Pd-Pd, 

Pd-Au, Au-Au, and Au-Pd. The median was calculated for predictions on labelled experimental data by 10 

separate Pd and Au absorber-specific NNs.

Table S2. Pd K-edge Neural Network implemented in Mathematica 12 7

Layer Neurons Activation Kernel Stride

Convolution 32 ReLU 1 1
Max Pooling N/A N/A 2 N/A
Convolution 32 ReLU 1 N/A

Fully Connected 516 ReLU N/A N/A
Fully Connected 2 N/A N/A N/A
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Table S3. Au L3-edge Neural Network implemented in Mathematica 12 7

Layer Neurons Activation Kernel Stride

Convolution 40 ReLU 2 2
Batch Norm N/A N/A N/A N/A

Fully Connected 300 ReLU N/A N/A
Fully Connected 300 ReLU N/A N/A

Dropout N/A N/A N/A N/A
Fully Connected 300 ReLU N/A N/A
Fully Connected 2 N/A N/A N/A

Figure S9. Au absorber specific NN architecture as implemented in Mathematica 12. The layers are 

connected sequentially from 1 to 11. 
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Figure S10. Pd absorber specific NN architecture as implemented in Mathematica 12. The layers are 

connected sequentially from 1 to 8.
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Note S3. Details of error estimation

Here we describe two major sources of uncertainty associated with the NN-XANES method, 1) the 

systematic differences that exist between the theoretical training data and the experimental data, and 2) 

the stochastic training process. The uncertainties from source 1 are best estimated with the help of our 

labeled experimental data.  We estimate the uncertainties associated with the absorber-specific NN 

predictions by assuming that there exists mean absolute error associated with the predictors. Therefore, 

based on the absolute errors calculated for our validation and test predictions, we can estimate the 

minimum and maximum values of the true mean absolute error within a 95% confidence interval, where 

the maximum of the confidence interval is a conservative estimate of the maximum error bar for the pair-

specific predictions. This is accomplished by calculating the mean errors of the validation and test 

predictions (11 examples for the Pd absorber-specific NN and 13 examples for the Au absorber-specific 

NN). Equation 2 is then used to calculate the max of the confidence interval (the maximum error bar for 

our purposes), where  is the mean absolute error,  is the standard deviation of the mean absolute error, 𝑥̅ 𝜎

 is the number of examples, and 1.96 is the Z value for a 95% confidence interval.𝑛

.                                                                                                                 (2)
max 𝑒𝑟𝑟𝑜𝑟 = 𝑥̅ +

1.96𝜎
𝑛

 

After obtaining the mean and standard deviations of the absolute errors, we calculated the maximum 

value of the 95% confidence interval and take this to be a very conservative estimate of the error bars 

associated with the NN predictions. For the partial coordination numbers CPd-Pd, CPd-Au, CAu-Au, and CAu-Pd, 

we estimate the error bars as ± 1.0, ± 1.3, ± 0.8, and ± 0.9 respectively. The uncertainties from source two 

are determined by comparing the predictions made on the validation and testing data for 10 

independently trained NNs, for both Pd and Au. The median absolute deviations of the predictions are 

shown in Fig. S8 as a function of Pd concentration. For both Pd and Au absorber specific NNs, the errors 

due to stochastic variation are relatively stable, and are an order of magnitude lower than those due to 

systematic theoretical-experimental differences, and so we report the latter error bars in Fig. 4 and Table 

S4. However, the error due to source two is important when one is interested in relative changes in, rather 

than absolute predictions of, coordination numbers. 
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Note S4. Details of RCT-2 dataset

The synthesis methods for all RCT-SiO2 supported PdAu catalysts were reported previously (Pd2Au98,8, 9 

Pd4Au96,8 Pd9Au91,8, 9 and Pd25Au75.10) XAFS measurements were performed at beamline 8-ID (ISS) of the 

National Synchrotron Light Source II (NSLS-II) using a focused 0.5 mm by 0.5 mm beam, Si 111 

monochromator, and Pt collimating mirror for higher harmonic rejection. The RCT-SiO2 supported 

Pd4Au96, Pd9Au91, and Pd25Au75 powders were packed into 2.0 mm ID 2.4 mm OD quartz capillaries for 

insertion into the flow cell. The XAFS measurements were taken at the Pd K edge (24350 KeV) in 

fluorescence mode using a PIPS detector. The cell was positioned 45 degrees to the beam direction to 

reduce elastic scattering, and the PIPS was positioned perpendicular to the sample. A Pd foil reference 

standard was positioned between two ionization chambers directly after the flow cell. All XAFS was taken 

under He, and Pd25Au75 was measured under He and H2. The data was aligned and edge-step normalized 

using Athena,11 after which is was preprocessed for use with NN-EXAFS according to the procedure 

reported in Ref. 9

Figure S11. Pd K-edge for Pd foil references collected at beamlines 8-ID (RCT-2 data set collected at NSLSII 

in 2019), 12-BM-B (TiO2 supported data set collected at APS in 2018), BL 2-2 (RCT-1 data set collected at 

SSRL in 2017), and 11-ID-C (peptide stabilized data set collected at APS in 2014).
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Figure S12. The XANES-derived vs. EXAFS-derived first partial coordination numbers with respect to the 

Pd K-edge. Pd-Pd and Pd-Au coordination numbers predicted for the TiO2 supported data set are in black 

and red, respectively.
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Table S4. EXAFS/NN-EXAFS and NN-XANES-derived CNs for experimental datasets
EXAFS (or NN-EXAFS) NN-XANES

Experiment Samples CPd-Pd CPd-Au CAu-Au CAu-Pd CPd-Pd CPd-Au CAu-Au CAu-Pd
a b c d

Pd9Au91 (He) 1.2(1) Δ 10.6(3) Δ - - 1.0 10.3 - -
Pd4Au96 (He) 1.2(2) Δ 10.3(5) Δ - - 1.1 10.1 - -
Pd25Au75 (He) 0.6(5) Δ 9.7(12) Δ - - 2.1 8.7 - -

NSLSII RCT 
support
(RCT-2)

Pd25Au75 (H2) 1.1(6) Δ 9.8(12) Δ - - 2.2 8.5 - -

Pd2Au98 (He) 0.9(4) Δ 10.4(6) Δ 11.2(2) Δ 0.5(2) Δ 0.0 12.6 10.3 0.1SSRL RCT 
support
(RCT-1)

Pd9Au91 (He) 1.1(6) Δ 10.3(9) Δ 10.6(3) Δ 0.8(2) Δ 0.8 10.7 10.4 0.1

83%PdAu 6.9(3) Δ 2.4(5) Δ 3.6(5) Δ 7.1(5) Δ 5.4 3.6 3.1 7.3
67%PdAu 4.3(2) Δ 3.8(4) Δ 5.2(3) Δ 6.1(4) Δ 4.7 4.7 5.2 5.5
50%PdAu 3.9(2) Δ 6.5(6) Δ 6.7(2) Δ 4.0(3) Δ 3.8 6.0 6.6 4.2
33%PdAu 2.8(4) Δ 6.5(6) Δ 8.1(3) Δ 1.9(3) Δ 3.5 6.5 8.5 2.2

APS
Peptide 

surfactant
(Peptide) 25%PdAu 1.7(5) Δ 9.5(4) Δ 8.4(3) Δ 1.6(2) Δ 2.6 7.9 9.1 1.4

24%PdAu 2.6(2) † 8.3(4) † 7.8(5) † 3.1(2) † 3.5 6.5 9.3 1.3
15%PdAu 1.0 (4) † 11(1) † 9.1(9) † 1.9(4) † 2.9 7.4 9.8 0.6
12%PdAu 2.1(3) † 7.4(6) † 10.2(8) † 1.4(4) † 4.5 5.1 10.1 0.4
5%PdAu 0.8(5) † 10(1) † 10(1) † 0.7(4) † 2.8 7.5 10.2 0.2
4%PdAu 1.3(3) Δ 10.8(3) Δ 10.3(8) † 0.5(4) † 1.4 9.7 10.1 0.2

APS TiO2 
support
(TiO2)

3%PdAu 1.6(2) Δ 10.7(2) Δ 12(1) † 0.0(4) † 2.4 8.2 10.3 0.1

†Conventional EXAFS         ΔNN-EXAFS          Max absolute error in predictions: a ± 1.0, b ± 1.3, c ± 0.8, d ± 0.9
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Figure S13. Pd K-edge for Pd9Au91 on RCT-SiO2 that was measured at beamlines 8-ID (RCT-2 data set 

collected at NSLSII in 2019), and BL 2-2 (RCT-1 data set collected at SSRL in 2017). The qualitative 

differences in the XANES are due to the different monochromators used (Si 111 at 8-ID and Si 220 at BL 

2-2). Despite the qualitative differences, NN-XANES predicts the same CNs for both spectra, which is 

expected as both spectra were measured for the same sample.



16

References

1  Y. Liu, N. Marcella, J. Timoshenko, A. Halder, B. Yang, L. Kolipaka, M. J. Pellin, S. Seifert, S. Vajda, 
P. Liu and A. I. Frenkel, J. Chem. Phys., 2019, 151, 164201.

2  J. Timoshenko, D. Lu, Y. Lin and A. I. Frenkel, J. Phys. Chem. Lett., 2017, 8, 5091-5098.
3  J. Timoshenko, S. Roese, H. Hövel and A. I. Frenkel, Radiat. Phys. Chem., 2018.
4  J. Timoshenko and A. I. Frenkel, ACS Catal., 2019, 9, 10192-10211.
5  J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange and K. Jorissen, Phys Chem Chem Phys, 2010, 12, 

5503-5513.
6  X. Glorot and Y. Bengio, Proceedings of the Thirteenth International Conference on Artificial 

Intelligence and Statistics, Chia Laguna Resort, Sardinia, Italy, 2010.
7  Mathematica, version 12.0, Wolfram Research, Inc.: Champaign, Illinois,2019.
8  M. Luneau, T. Shirman, A. C. Foucher, K. Duanmu, D. M. A. Verbart, P. Sautet, E. A. Stach, J. 

Aizenberg, R. J. Madix and C. M. Friend, ACS Catal., 2020, 10, 441-450.
9  J. Timoshenko, C. J. Wrasman, M. Luneau, T. Shirman, M. Cargnello, S. R. Bare, J. Aizenberg, C. 

M. Friend and A. I. Frenkel, Nano Lett., 2019, 19, 520-529.
10  E. Guan, A. C. Foucher, N. Marcella, T. Shirman, M. Luneau, A. R. Head, D. M. A. Verbart, J. 

Aizenberg, C. M. Friend, D. Stacchiola, E. A. Stach and A. I. Frenkel, ChemCatChem, 2020, 
12, 717-721.

11  B. Ravel and M. Newville, J. Synchrotron Radiat., 2005, 12, 537-541.


