Supporting Information

Protein packaging in ionic liquids mixtures: an ecofriendly approach towards improved stability of β-Lactoglobulin in cholinium-based mixed ionic liquids

Anamika Sindhu^a, Sumit Kumar^a, Dibyendu Mondal^{b*}, Indra Bahadur^c, and Pannuru Venkatesu^{a*}

^a.Department of Chemistry, University of Delhi, Delhi, 110 007, India

^{b.}Centre for Nano & Material Science, JAIN (deemed to be University), Jain Global Campus, Bangalore-562112, India

^{c.}Department of Chemistry, School of Physical and Chemical Sciences, Material Science Innovation & Modelling (MaSIM) Focus Area, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa

* Corresponding authors: m.dibyendu@jainuniversity.ac.in, dmtapu@gmail.com; venkatesup@hotmail.com; pvenkatesu@chemistry.du.ac.in; Tel: +91-11-27666646-142; Fax: +91-11-2766 6605

The determination of ΔS_m and ΔH_m values

The thermal transition curves were analysed to calculate thermodynamic parameter such as transition temperature (T_m), enthalpy change of protein unfolding (ΔH_m) and entropy change of unfolding (ΔS_m) at T_m . The value of transition temperature (T_m) at a condition where ΔG_u is zero, can be acquired by analysis of the plot of ΔG_u versus T (°C). The slope of this plot at T_m yields the entropy change of unfolding (ΔS_m). The ΔH_m was calculated using the following equation.

 $\Delta H_m = T_m \Delta S_m$

Figure. S1 UV-visible absorption spectra of β -LG in presence of varying concentrations of [Chn][I] at 25 °C.

Figure. S2 Fluorescence emission spectra of β -LG in presence of varying concentrations of [Chn][I] at 25 °C.

Figure S3. Near-UV CD analysis of β -LG conformation in presence of varying concentrations of [Chn][I] at 25 °C.

Table S1 Hydrodynamic Diar	meters (d _H) of β -LG in presence	of various choline	-based ILs and their mi	xtures
		d (ama)	1	

	d _H (nm)
Pure ß-I G	5.6
[Chn][Ac] 10mg/mL	5.1
[Chn][Bit] 10mg/mL	6.0
[Chn][Cl] 10mg/mL	5.0
[Chn][Dhp] 10mg/mL	4.9
[Chn][l] 10mg/mL	5.5
[Chn][I] 20mg/mL	5.7
[Chn][I] 30mg/mL	6.1
[Chn][I] 40mg/mL	6.4
[Chn][I] 50mg/mL	6.5
[Chn][I] 60mg/mL	6.9
[Chn][Ac]+ [Chn][I] (1:1)	5.3
[Chn][Ac]+ [Chn][I] (1:2)	5.3
[Chn][Ac]+ [Chn][I] (1:3)	5.6
[Chn][Ac]+ [Chn][I] (1:4)	5.7
[Chn][Ac]+ [Chn][l] (1:5)	5.8

[Chn][Ac]+ [Chn][I] (1:6)	6.0
[Chn][Bit]+ [Chn][I] (1:1)	6.0
[Chn][Bit]+ [Chn][I] (1:2)	6.1
[Chn][Bit]+ [Chn][I] (1:3)	6.2
[Chn][Bit]+ [Chn][I] (1:4)	6.0
[Chn][Bit]+ [Chn][I] (1:5)	6.1
[Chn][Bit]+ [Chn][I] (1:6)	6.2
[Chn][Cl]+ [Chn][l] (1:1)	5.1
[Chn][Cl]+ [Chn][l] (1:2)	5.1
[Chn][Cl]+ [Chn][l] (1:3)	5.3
[Chn][Cl]+ [Chn][l] (1:4)	5.8
[Chn][Cl]+ [Chn][l] (1:5)	5.9
[Chn][Cl]+ [Chn][l] (1:6)	6.0
[Chn][Dhp]+ [Chn][I] (1:1)	5.8
[Chn][Dhp]+ [Chn][I] (1:2)	5.8
[Chn][Dhp]+ [Chn][I] (1:3)	5.8
[Chn][Dhp]+ [Chn][I] (1:4)	5.9
[Chn][Dhp]+ [Chn][I] (1:5)	6.1
[Chn][Dhp]+ [Chn][I] (1:6)	6.3

Table S2: Transition temperature (T_m), Enthalpy change of unfolding (ΔH_m) and entropy change of unfolding (ΔS_m) at T_m determined by the fluorescence analysis of thermal denaturation of β -LG in absence and presence of various choline-based ILs and their mixtures. The error in T_m does not exceed 0.1 °C.

	T _m (°C)	ΔS _m	ΔH _m (kJ.mol⁻¹)
		(kJ.mol ⁻¹ K ⁻¹)	
Pure β-LG	83.86	1.24	445.90
[Chn][Ac] 10mg/mL	85.85	1.28	459.52
[Chn][Bit] 10mg/mL	88.16	2.72	982.76
[Chn][Cl] 10mg/mL	85.65	1.44	516.67
[Chn][Dhp] 10mg/mL	91.00	2.90	1056.03
[Chn][l] 10mg/mL	83.20	0.97	345.35
[Chn][I] 20mg/mL	82.35	1.03	366.16
[Chn][I] 30mg/mL	82.20	0.64	227.40
[Chn][I] 40mg/mL	80.80	0.55	194.60
[Chn][I] 50mg/mL	79.00	0.74	260.53
[Chn][I] 60mg/mL	78.10	0.51	179.13
[Chn][Ac]+ [Chn][l] (1:1)	84.85	1.18	422.44
[Chn][Ac]+ [Chn][I] (1:2)	84.65	1.13	404.31
[Chn][Ac]+ [Chn][l] (1:3)	84.20	1.10	393.08
[Chn][Ac]+ [Chn][I] (1:4)	84.00	0.77	275.00
[Chn][Ac]+ [Chn][I] (1:5)	82.60	1.08	384.21
[Chn][Ac]+ [Chn][l] (1:6)	82.50	0.84	298.74
[Chn][Bit]+ [Chn][I] (1:1)	87.60	1.50	540.22
[Chn][Bit]+ [Chn][I] (1:2)	87.00	0.84	303.03
[Chn][Bit]+ [Chn][I] (1:3)	87.43	1.10	396.63
[Chn][Bit]+ [Chn][I] (1:4)	84.65	0.79	282.66

[Chn][Bit]+ [Chn][l] (1:5)	80.78	0.77	272.52
[Chn][Bit]+ [Chn][l] (1:6)	78.63	0.80	281.42
[Chn][Cl]+ [Chn][l] (1:1)	85.45	1.19	426.73
[Chn][Cl]+ [Chn][l] (1:2)	85.20	1.18	422.85
[Chn][Cl]+ [Chn][l] (1:3)	85.00	0.98	350.98
[Chn][Cl]+ [Chn][l] (1:4)	84.85	0.91	325.78
[Chn][Cl]+ [Chn][l] (1:5)	84.45	0.70	250.32
[Chn][Cl]+ [Chn][l] (1:6)	83.27	0.61	217.41
[Chn][Dhp]+ [Chn][I] (1:1)	90.80	1.27	462.21
[Chn][Dhp]+ [Chn][I] (1:2)	88.85	0.94	340.28
[Chn][Dhp]+ [Chn][I] (1:3)	88.45	0.99	357.98
[Chn][Dhp]+ [Chn][l] (1:4)	87.65	0.84	303.07
[Chn][Dhp]+ [Chn][l] (1:5)	87.00	0.80	288.12
[Chn][Dhp]+ [Chn][l] (1:6)	86.20	0.71	255.13