SUPPLEMENTARY INFORMATION

Submitted to *Physical Chemistry Chemical Physics (PCCP)*

Electronic Supplementary Information for

Photocatalytic performance and mechanism insights of S-scheme g- C_3N_4/Bi_2MoO_6 heterostructure in phenol degradation and hydrogen evolution reaction under visible light

Yanzhong Zhen ^{a,†,*}, Chunming Yang ^{a,†}, Feng Fu ^{a,*},Huidong Shen ^a, Wenwen Xue ^a, Chunrong Gu ^a, Jinghao Feng ^a, Yuecheng Zhang ^a, Yucang Liang^{b,*}

^a College of Chemistry & Chemical Engineering, Yan'an University, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an 716000, China

^b Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany

[†] These authors contributed equally to this work.

* Corresponding authors at: College of Chemistry & Chemical Engineering, Yan'an

University, Yan'an 716000, PR China

Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der

Morgenstelle 18, 72076 Tübingen, Germany

E-mail addresses: zyz943@163.com (Y. Zhen);yadxfufeng@126.com (F. Fu),

yucang.liang@uni-tuebingen.de (Y. Liang)

Content and caption

Fig.S1 XRD patterns of with as-prepared samples under different calcination temperature

Fig.S2 survey XPS curve of BMO-200 and 100% g-CN/BMO-200

Fig.S3. (a) UV–Vis DRS spectra of pristine BMO, BMO-200, X% g-CN/BMO-200 and pure g-CN, (b) UV–Vis DRS spectra 100% g-CN/BMO with different calcination temperature, (c) the E_g of pure g-CN and BMO-200.

Fig.S4. Cycling runs of 100% g-CN/BMO-200 (b) SEM images of 100% g-CN/BMO-200 before and after used

Table S1. Lifetimes and relative intensities of 100% g-CN/BMO-200, g-CN, BMO-200, Pristine BMO

Fig.S1 XRD patterns of with as-prepared samples under different calcination

temperature

Fig.S2 survey XPS curve of BMO-200 and 100% g-CN/BMO-200

Fig S3. (a) UV–Vis DRS spectra of pristine BMO, BMO-200, X% g-CN/BMO-200 and pure g-CN, (b) UV–Vis DRS spectra 100% g-CN/BMO with different calcination temperature, (c) the $E_{\rm g}$ of pure g-CN and BMO-200.

SUPPLEMENTARY INFORMATION

Fig.S4. (a) Cycling runs of 100% g-CN/BMO-200 (b) SEM images of

100% g-CN/BMO-200 before and after used

Sample	τ ₁ (ns)	intensity	$\tau_2(ns)$	intensity	τ ₃ (ns)	intensity
100% g- CN/BMO-200	1.79	51.21	6.54	48.79		
g-CN	1.56	50.48	6.08	0.17		
BMO-200	0.20	56.93	1.23	28.05	5.65	15.01
Pristine BMO	0.08	57.87	0.63	37.19	3.38	4.94

Table S1. Lifetimes and relative intensities of 100% g-CN/BMO-200,g-CN, BMO-200, Pristine BMO