Supporting information

First-principles investigation of ScX_2 (X = Cl, Br or I) monolayers for flexible

spintronics and electronics

Wenzhou Chen*a, Xiaobing Chena, Yuzhen Wua, Guishan Liua and Hui Pan*b,c

^a School of Materials Science and Engineering, Dongguan University of Technology, Guangdong

523808, China

^b Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials

Engineering, University of Macau, Macau, China

^c Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau,

Macao, China

* Corresponding Authors: chenwz@dgut.edu.cn (W. C.); huipan@um.edu.mo (H. P.)

Figure S1. Phonon spectra for the (a) 1H-ScCl₂, (b) 1H-ScBr₂, (c) 1H-ScI₂, respectively.

Figure S2. Potential energy of $ScCl_2$ monolayer as a function of time step within the canonical ensemble at T = 300 K.

Figure S3. Potential energy of $ScBr_2$ monolayer as a function of time step within the canonical ensemble at T = 300 K.

Figure S4. Potential energy of ScI_2 monolayer as a function of time step within the canonical ensemble at T = 300 K.

Table S1 Elastic constants for ScX_2 (X = Cl, Br or I) monolayers.

Figure S5. Configurations of the magnetic structures: (a) Ferromagnetic structure, (b) type-1 antiferromagnetic structure, (c) type-2 antiferromagnetic structure, and (d) type-3 antiferromagnetic structure.

Figure S6. Calculated band structure of the $ScCl_2$ monolayer: (a) without SOC effect; (b) with SOC effect; (c) contributions of the d orbitals of the Sc elements to the band structure; (d) contributions of the p orbitals of the Cl elements to the band structure.

Figure S7. Calculated band structure of the $ScBr_2$ monolayer: (a) without SOC effect; (b) with SOC effect; (c) contributions of the d orbitals of the Sc elements to the band structure; (d) contributions of the p orbitals of the Br elements to the band structure.

Figure S8. Calculated band structure of the ScI_2 monolayer: (a) without SOC effect; (b) with SOC effect; (c) contributions of the d orbitals of the Sc elements to the band structure; (d) contributions of the p orbitals of the I elements to the band structure.

Figure S9. Partial and total density of states for the (a) $ScCl_2$, (b) $ScBr_2$, and (c) ScI_2 monolayers, respectively.

Figure S10. Band energies of the Conduction Band Minimum (CBM) and Valence Band Maximum (VBM) for ScCl₂ monolayer, with respect to uniaxial compression or tension along the G-M and G-K directions, respectively. Blue points represent CBM or VBM, whereas black lines mean the fitting curves.

Figure S11. Band energies of the Conduction Band Minimum (CBM) and Valence Band Maximum (VBM) for $ScBr_2$ monolayer, with respect to uniaxial compression or tension along the G-M and G-K directions, respectively. Blue points represent CBM or VBM, whereas black lines mean the fitting curves.

Figure S12. Band energies of the Conduction Band Minimum (CBM) and Valence Band Maximum (VBM) for ScI_2 monolayer, with respect to uniaxial compression or tension along the G-M and G-K directions, respectively. Blue points represent CBM or VBM, whereas black lines mean the fitting curves.