A DFT study for CO₂ hydrogenation on W (111) and Ni-doped W (111) surface

Minhua Zhang,^{a,b} Song Yin^{a,b} and Yifei Chen^{†a,b}

^a Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China

^b Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China

Table S1 Adsorption energies (E_{ad}) of reactants on the W (111) surface with different supercells.

Table S2 The Mulliken charge, binding energy and spin of Ni on Ni_xW (111) surfaces (x=1, 3).

Fig. S1 The adsorption configurations of reactants and intermediates on W (111) surface.

Fig. S2 The adsorption configurations of reactants and intermediates on Ni₃W (111) surface.

Fig. S3 PDOS diagrams of W and (a) C, (b) Oa, (b) Ob atoms of CO₂ adsorbed on the W (111) surfaces.

Fig. S4 PDOS diagrams of W and (a) C, (b-c) Ob atoms of CO_2 adsorbed on the Ni₃W (111) surfaces.

Table S3 Geometric parameters of reactants and intermediates on the Ni_xW (111) surfaces (x=0, 1,

3).

Fig. S5 The initial, transition and final states of the elementary reaction step of CO_2 hydrogenation on W (111) surface.

Fig. S6 The initial, transition and final states of the elementary reaction step of CO_2 hydrogenation on Ni₃W (111) surface.

Fig. S7 Deformation charge density of (a) CO, (b) H, (c) HCO and (d) COH adsorbed on W (111) surface.

Fig. S8 Deformation charge density of (a) CO, (b) H, (c) HCO and (d) COH adsorbed on Ni₃W

[†] To whom correspondence should be addressed

E-mail address: yfchen@tju.edu.cn

(111) surface.

Species	(2×2) supercell	(3×3) supercell	(4×4) supercell	
	$E_{\rm ad}/{\rm eV}$	$E_{\rm ad}/{\rm eV}$	$E_{\rm ad}/{\rm eV}$	
CO ₂	-2.11	-2.06	-2.21	
Н	-3.09	-3.09	-3.06	

Table S1 Adsorption energies (E_{ad}) of reactants on the W (111) surface with different supercells.

Table S2 The Mulliken charge, binding energy and spin of Ni on Ni_xW (111) surfaces (x=1, 3)

Ni of different	Mulliken charge	Binding Energy	Quin	
configuration	(e)	(eV)	Spin	
Ni ₁ W (111) - Ni	-0.192	-6.48	+0.165	
Ni ₃ W (111) – Ni1	-0.175	-6.11	-0.016	
Ni ₃ W (111) – Ni2	-0.182	-6.11	+0.005	
Ni ₃ W (111) – Ni3	-0.177	-6.11	-0.016	
Ni adsorbed at	0.102	5.10	0.041	
W (111) surface	-0.102	-5.19	-0.041	

Fig. S1 The adsorption configurations of reactants and intermediates on W (111) surface; purple, the first and fourth layer of W atoms; blue, the second and fifth layer of W atoms; cyan, the third and sixth layer of W atoms; red, O atoms; gray, C atoms; white, H atoms.

Fig. S2 The adsorption configurations of reactants and intermediates on $\rm Ni_3W\,(111)$ surface

(a) (b) (c) Fig. S3 PDOS diagrams of W and (a) C, (b) Oa, (c) Ob atoms of CO₂ adsorbed on the W (111) surfaces.

Table S	3 Geometric	parameters	of reactants and	intermediates of	on the Ni _x W	(111)	surfaces	(x=0,	1, 3	3).
---------	--------------------	------------	------------------	------------------	--------------------------	-------	----------	-------	------	-----

Species	W (111) surface	Ni_1W (111) surface	Ni ₃ W (111) surface
CO ₂	d(W3-Oa) = 2.09 Å	d(W2-Oa) = 2.09 Å	d(W1-C) = 2.23 Å
	d(W4-Ob) = 2.09 Å	d(W3-Ob) = 2.09 Å	d(W4-C) = 2.23 Å
	d(W7-C) = 2.17 Å	d(W6-C) = 2.17 Å	d(W1-Oa) = 2.14 Å
	d(C-Oa) = 1.32 Å	d(C-Oa)= 1.32 Å	d(C-Oa) = 1.25 Å
	d(C-Ob) = 1.32 Å	d(C-Ob)= 1.32 Å	d(C-Ob) = 1.29 Å
H ₂	d(Ha-W5) = 1.93 Å	$f(H_{2}, N_{1}) = 1.72$ Å	$d(U_{2}, W_{1}) = 1.00$ Å
	d(Ha-W1) = 1.92 Å	d(Ha-Ni) = 1.72 A	d(Ha-W1) = 1.90 A
	d(Hb W1) = 1.03 Å	d(Hb-W3) = 1.90 Å	d(Ha-W4) = 1.92 Å
	u(110 - w T) = 1.93 A	d(Hb-W6) = 1.92 Å	d(Hb-Ni3) = 1.77 Å
	d(Hb-W7) = 1.92		
Н	$d(U_{ac} + W_{1}) = 1.02$ Å	d(Ni-H) = 1.72 Å	J(N:2, II) = 1.75 Å
	d(H and W1) = 1.93 A,	d(H and W6) = 1.97 Å	a(N13-H) = 1.75 A
	d(H and W7) = 1.92 A	d(H and W8) = 2.10 Å	d(H and W4) = 1.96 A.
CO ₂ +H	$d(U_{cond} C) = 2.10$ Å	d(H and C) = 2.73 Å	d(H and C) = 3.94 Å
	d(H and C) = 2.19 A,	d(W2-Oa) = 2.09 Å	d(W1-Oa) = 2.13 Å
	d(W3-Oa) = 2.11 A	d(W3-Ob) = 2.10 Å	d(W4-C) = 2.22 Å
	d(W4-Ob) = 2.11 Å	d(W6-C) = 2.16 Å	d(W1-C) = 2.23 Å
	d(W7-C) = 2.21 Å	$d(C_{-}\Omega_{a}) = 1.32 \text{ Å}$	$d(C_{-}O_{2}) = 1.29 \text{ Å}$
	d(C-Oa) = 1.30 Å		
	d(C-Ob) = 1.30 Å	d(C-Ob) = 1.31 A	d(C-Ob)= 1.25 A
		d(Ni-H) = 1.72 Å	d(Ni and H) = 1.88 Å

HCOO-horizontal	d(W3-Oa) = 1.97 Å	d(W2-Oa) = 1.98 Å	d(W1-Oa) = 1.97 Å
	d(W4-Ob) = 1.98 Å	d(W3-Ob) = 1.98 Å	d(W4-Ob) = 2.06 Å
	d(C-Oa) = 1.40 Å	d(C-Oa) = 1.40 Å	d(C-Oa) = 1.37 Å
	d(C-Ob) = 1.40 Å	d(C-Ob) = 1.40 Å	d(C-Ob) = 1.35 Å
	d(C-H) = 1.11 Å	d(C-H) = 1.12 Å	d(C-H) = 1.10 Å
HCOO-vertical	d(W3-Oa) = 2.13 Å	d(W2-Oa) = 2.14 Å	d(W1-Oa) = 2.08 Å
	d(W4-Ob) = 2.13 Å	d(W3-Ob) = 2.14 Å	d(W4-Ob) = 2.20 Å
	d(C-Oa) = 1.28 Å	d(C-Oa) = 1.28 Å	d(C-Oa) = 1.29 Å
	d(C-Ob) = 1.28 Å	d(C-Ob) = 1.28 Å	d(C-Ob) = 1.26 Å
	d(C-H) = 1.10 Å	d(C-H) = 1.10 Å	d(C-H) = 1.10 Å
COOH-cis	d(W3-Oa) = 2.13 Å	$f(W_2(0_2)) = 2.14$ Å	$A(W(1, O_{r})) = 2.09$ Å
	d(C-W7) = 2.12 Å	$d(w_2 - 0a) = 2.14 \text{ A}$	d(W I - Oa) = 2.08 A
	d(C-Oa) = 1.30 Å	d(C - W6) = 2.13 A	d(C - W4) = 2.19 A
	d(C-Ob) = 1.46 Å	d(C-Oa) = 1.29 A	d(C-Oa) = 1.31 A
	d(Ob-H) = 0.98 Å	d(C-Ob) = 1.44 A	d(C-Ob) = 1.34 A
	d(Ob and W4) = 2.33 Å	a(Ob-H) = 0.99 A	d(Ob-H) = 0.98 A
COOH-trans	d(W3-Oa) = 2.09 Å	1/11/2 (0) 2 0 0 8	
	d(C-W7) = 2.18 Å	$d(w_2-Oa) = 2.08 \text{ A}$	d(W I - Oa) = 2.0 / A
	d(C-Oa) = 1.30 Å	d(C - W6) = 2.20 A	d(C-W4) = 2.19 A
	d(C-Ob) = 1.36 Å	d(C-Oa) = 1.30 A	d(C-Oa) = 1.30 A
	d(Ob-H) = 0.98 Å	d(C-Ob) = 1.35 A	d(C-Ob) = 1.34 A
	d(Ob and W4) = 3.88 Å	a(Ob-H) = 0.99 A	d(Ob-H) = 0.98 A
CO+O			d(W1-C) = 2.18 Å
	d(C-Oa) = 1.24 Å	d(W2-Oa) = 2.22 Å	d(W4-C) = 1.99 Å
	d(C-W3) = 2.27 Å	d(C-W6) = 2.00 Å	d(W1-Oa) = 2.18 Å
	d(C-W7) = 2.00 Å	d(C-Oa) = 1.24 Å	d(C-Oa) = 1.25 Å
	d(Ob-W4) = 1.74 Å	d(Ob-W3) = 1.74 Å	d(C and Ob) = 2.91 Å,
	d(Ob and C) = 3.51 Å	d(C and Ob) = 3.38 Å	d(Ob-W4) = 2.02 Å
			d(Ob-Ni3) = 1.96 Å
CO+H	d(C-O) = 1.24 Å	d(W2-O) = 2.26 Å	d(W1-C) = 2.21 Å
	d(C-W3) = 2.24 Å	d(C-W6) = 2.01 Å	d(W4-C) = 1.99 Å
	d(C-W7) = 2.03 Å	d(C-O) = 1.24 Å	d(W1-O) = 2.20 Å
	d(H and W1) = 1.88 Å	d(H-W6) = 1.94 Å	d(C-O) = 1.24 Å
	d(H and W7) = 1.89 Å	d(H-W8) = 2.12 Å	d(Ni3-H) = 1.76 Å
	d(H and C) = 2.32 Å	d(C and H) = 2.49 Å	d(C and H) = 2.78 Å
НСО	d(C-O) = 1.35 Å	d(W2-O) = 2.02 Å	d(W1-O) = 2.03 Å
	d(C-H) = 1.11 Å	d(C-W6) = 1.34 Å	d(W4-C) = 2.11 Å
	d(C-W7) = 2.13 Å	d(C-H) = 1.11 Å	d(C-O) = 1.34 Å
	d(O-W3) = 2.01 Å	d(C-W6) = 2.11 Å	d(C-H) = 1.11 Å
СОН		d(W2-C) = 2.03 Å	d(W1-C) = 2.06 Å
	d(C-O) = 1.33 A	d(C-W6) = 2.15 Å	d(W4-C) = 2.10 Å
	d(O-H) = 0.98 Å	d(C-O) = 1.35 Å	d(C-O) = 1.35 Å
	d(C-W7) = 1.92 Å	d(O-H) = 0.98 Å	d(O-H) = 0.98 Å
O+H	d(H-W1) = 1.92 Å	d(H-Ni) = 1.71 Å	d(H-Ni2) = 1.68 Å

	d(H-W7) = 1.90 Å	d(O-W3) = 1.74 Å	d(O-Ni3) = 1.95 Å
	d(O-W4) = 1.74 Å	d(H and O) = 3.50 Å	d(O-W4) = 1.97 Å
	d(H and O) = 3.46 Å		d(H and O) = 2.80 Å
ОН	$d(0, W_4) = 1.02$ Å	d(0, W2) = 1.01 Å	d(O-Ni3) = 2.03 Å
	u(0-w4) = 1.92 A	$u(0-w_3) = 1.91 \text{ A}$	d(O-W4) = 2.08 Å
	d(O-H) = 0.97 A	d(O-H) = 0.97 A	d(O-H) = 0.97 Å
	d(Ha-W1) = 1.93 Å	d(Ha Ni) = 1.70 Å	d(Ha-Ni2) = 1.72 Å
ОН+Н	d(Ha-W7) = 1.92 Å	d(Ha-NI) = 1.70 A d(O-W3) = 1.91 Å	d(O-W4) = 2.08 Å
	d(O-W4) = 1.91 Å		d(O-Ni3) = 2.03 Å
	d(O-Hb) = 0.97 Å	d(0-Hb) = 0.97 A	d(O-Hb) = 0.98 Å
	d(Ha and O) = 3.29 Å	u(fra all 0) = 5.41 A	d(Ha and O) = 2.92 Å
H ₂ O	d(Ha-O) = 0.99 Å	d(Ha-O) = 0.99 Å	d(Ha-O) = 0.98 Å
	d(Hb-O) = 0.99 Å	d(Hb-O) = 0.99 Å	d(Hb-O) = 0.98 Å
	d(O-W4) = 2.31 Å	d(O-W4) = 2.32 Å	d(O-W4) = 2.15 Å

Fig. S5 The initial, transition and final states of the elementary reaction step of CO₂ hydrogenation on W (111)

surface.

Fig. S6 The initial, transition and final states of the elementary reaction step of CO₂ hydrogenation on Ni₃W (111)

Fig. S7 Deformation charge density of (a) CO, (b) H, (c) HCO and (d) COH adsorbed on W (111) surface. Red represent accumulation of electronic density; blue represent depletion of electronic density.

Fig. S8 Deformation charge density of (a) CO, (b) H, (c) HCO and (d) COH adsorbed on Ni_3W (111) surface.