# Supporting Information for: <br> Structure of Aqueous $\mathbf{H}_{3} \mathrm{BO}_{3}$ Solutions by DFT and Neutron Scattering 

Yongquan Zhou ${ }^{\text {a,*, }}$, Toshio Yamaguchib, Wenqian Zhang ${ }^{\text {a }}$, Kazutaka Ikedac ${ }^{c}$, Koji Yoshida ${ }^{\text {b }}$, Fayan Zhu ${ }^{\text {a }}$, Hongyan Liu ${ }^{\text {a }}$

${ }^{a}$ Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources; Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province; Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
${ }^{b}$ Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan, Fukuoka 814-0180, Japan
${ }^{\text {chigh Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan }}$

All correspondence should be sen to: Dr. Yongquan Zhou,
E-mail. yongqzhou@163.com

## 1. Sample Information



Fig. S1. Sample solutions lay in the $\mathrm{H}_{3} \mathrm{BO}_{3}-\mathrm{D}_{2} \mathrm{O}$ binary
(Based on data from Nies, N. P, et al. J. Chem. Eng. Data, 1967, 12 (3), 303-313. ${ }^{1}$ )

In the present work, the deuterated compounds were used to avoid the large incoherent scattering-cross section of $\mathrm{H}\left(\sigma_{\mathrm{i}}{ }^{\mathrm{H}}=82.03\right.$ barns and $\sigma_{\mathrm{i}}^{\mathrm{D}}=2.05$ barns $)$. Meantime, ${ }^{11} \mathrm{~B}$ were used to over come the large absorption of natural boron $\left(\sigma_{\mathrm{a}}{ }^{\text {natural }} \mathrm{B}=767.8\right.$ barns and $\sigma_{\mathrm{a}}{ }^{10} \mathrm{~B}=0.0055$ barns).


Fig. S2. The contribution of each atom pair to the totall scartering indensity for aqueous ${ }^{2} \mathrm{H}_{3}{ }^{11} \mathrm{BO}_{3}$ solutions at different concentration (WSR=57, left and WSR $=24$, right) by nuetron diffraction with $\lambda$ of $1.798 \AA$.

1

## 2. Parameters for EPSR

2

|  | Bonds/Å |  |  | Angle ${ }^{\circ}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | atom 1 | atom 2 | distance | atom 1 | atom 2 | atom 3 | Angle |
|  | $\mathrm{O}(4)$ | H(7) | 0.965 | H(7) | $\mathrm{O}(4)$ | B(1) | 112.652 |
|  | $\mathrm{O}(3)-$ | H(6) | 0.965 | H(6) | $\mathrm{O}(3)$ | B(1) | 112.601 |
|  | $\mathrm{O}(2)$ | H(5) | 0.965 | H(5) | $\mathrm{O}(2)$ | B(1) | 112.480 |
| $\mathrm{H}_{3} \mathrm{BO}_{3}$ | B(1) | $\mathrm{O}(4)$ | 1.367 | $\mathrm{O}(4)$ | B(1) | $\mathrm{O}(3)$ | 120.045 |
|  | B(1) | $\mathrm{O}(3)$ | 1.367 | $\mathrm{O}(4)$ | B(1) | $\mathrm{O}(2)$ | 119.997 |
|  | B(1) | $\mathrm{O}(2)$ | 1.367 | $\mathrm{O}(3)$ | B(1) | $\mathrm{O}(2)$ | 119.958 |
| $\mathrm{H}_{2} \mathrm{O}$ | $\mathrm{O}(1)$ | H(2) | 0.956 | H(2) | $\mathrm{O}(1)$ | $\mathrm{O}(3)$ | 105.112 |
|  | $\mathrm{O}(1)$ | H(3) | 0.956 |  |  |  |  |

3
4
Table S2. Potential parameter values for EPSR modelling

|  | $\mathrm{B}^{2}$ | $\mathrm{O}(\mathrm{B})^{2}$ | $\mathrm{D}(\mathrm{B})^{2}$ | $\mathrm{O}(\mathrm{W})^{3}$ | $\mathrm{D}(\mathrm{W})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\varepsilon / \mathrm{kJ} . \mathrm{mol}^{-1}$ | 0.142 | 0.666 | 0.00 | 0.650 | 0.000 |
| $\sigma / \AA ̊$ | 3.528 | 2.851 | 0.00 | 3.160 | 0.00 |
| Mass | 10.810 | 15.9994 | 2.000 | 16.00 | 2.00 |
| Charge | 0.474 | -0.368 | 0.210 | -0.8476 | 0.4238 |

5

6

| Table S3. EPSR simulation setup details. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Simulation box | \# water | \#B(OH) |  |  |  |
|  | molecules | molecules | Density/atoms $\AA^{-3}$ | Box side length $/ \AA$ | Iterations |
| times |  |  |  |  |  |
| B57W-298 | 1000 | 18 | 0.09947 | 31.5572 | 20100 |
| B57W-373 | 1000 | 18 | 0.09583 | 31.9518 | 25414 |
| B57W-343 | 1000 | 41 | 0.09754 | 32.3002 | 21362 |
| B57W-373 | 1000 | 41 | 0.09570 | 32.5057 | 23843 |

## 1 3.DFT Calculations

2 Table S4:Calculated conformational populations ( $p_{i}, \%$ ), energy parameters and bond 3 parameters of $2 \mathrm{~B}(\mathrm{OH})_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ conformers at $\omega \mathrm{b} 97 \mathrm{xd} / 6-311++\mathrm{g}(2 \mathrm{df}, 2 \mathrm{pd})$ basis level.

4

| isomers |  | $p_{i}$ | Bond parameters/ $/ \AA$ |  |  |  |  |  | Relative |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Intra-B-O | B- $\mathrm{O}_{(\mathrm{W}, \text { Dual }}$ | B- ${ }_{(\text {(W, Don. })}$ | B- $\mathrm{O}_{(\mathrm{W}, \mathrm{Acc} .)}$ | B-B | $\mathrm{kcal} / \mathrm{mol}$ |  |
| HB2W6A | MCMP-L |  | 0.000 | 1.368 | 3.214 | 3.352 | 3.657 | 4.398 | -15.56 | 8.88 |
| HB2W6B | MCMP-A | 24.683 | 1.367 | 3.217 | 3.543 | 3.712 | 4.444 | -24 | 0.44 |
| HB2W6C | SMP-A | 13.028 | 1.367 | 1 | 3.608 | 3.785 | 6.626 | -23.62 | 0.82 |
| HB2W6D | SMP-D | 0.001 | 1.367 | 3.192 | 3.576 | 3.704 | 5.69 | -18.12 | 6.32 |
| HB2W6E | MCMP-O | 0.000 | 1.368 | 3.241 | 3.643 | 3.667 | 4.465 | -14.83 | 9.61 |
| HB2W6F | MCMP-E | 0.013 | 1.367 | 3.326 | 3.501 | 3.622 | 4.343 | -19.53 | 4.91 |
| HB2W6G | BCMP-C | 0.452 | 1.366 | 1 | 3.456 | 3.696 | 4.016 | -21.63 | 2.81 |
| HB2W6H | PSMP-B | 0.007 | 1.368 | 3.221 | 3.498 | 3.732 | 3.676 | -19.12 | 5.32 |
| HB2W6I | MCMP-D | 0.033 | 1.366 | 1 | 3.503 | 3.66 | 4.645 | -20.09 | 4.35 |
| HB2W6J | MCMP-F | 0.01 | 1.367 | 3.221 | 3.554 | 3.643 | 4.744 | -19.38 | 5.06 |
| HB2W6K | PSMP-D | 0.000 | 1.369 | 3.229 | 3.543 | 3.959 | 3.372 | -15.83 | 8.61 |
| HB2W6L | BCMP-F | 0.003 | 1.367 | 3.152 | 3.528 | 3.475 | 4.04 | -18.63 | 5.81 |
| HB2W6M | SMP-B | 4.402 | 1.367 | 3.2 | 3.598 | 3.756 | 6.157 | -22.98 | 1.46 |
| HB2W6N | MCMP-C | 0.085 | 1.367 | 3.219 | 3.575 | 3.847 | 4.844 | -20.64 | 3.80 |
| HB2W6O | BCMP-G | 0.000 | 1.367 | 3.223 | 3.42 | 3.577 | 4.004 | -17.24 | 7.20 |
| HB2W6P | BCMP-A | 52.194 | 1.366 | 1 | 3.545 | 4.075 | 4.078 | -24.44 | 0.00 |
| HB2W6Q | MCMP-B | 0.093 | 1.367 | 1 | 3.469 | 3.532 | 4.552 | -20.69 | 3.75 |
| HB2W6R | BCMP-B | 4.286 | 1.366 | 3.210 | 3.494 | 3.82 | 4.09 | -22.96 | 1.48 |
| HB2W6S | BCMP-E | 0.017 | 1.367 | 3.208 | 3.669 | 3.858 | 4.085 | -19.68 | 4.76 |
| HB2W6T | BCMP-D | 0.122 | 1.368 | 3.218 | 3.668 | 3.738 | 4.089 | -20.86 | 3.58 |
| HB2W6U | MCMP-M | 0.000 | 1.367 | 3.203 | 3.514 | 4.041 | 4.777 | -16.73 | 7.71 |
| HB2W6V | PSMP-C | 0.000 | 1.368 | 3.183 | 3.513 | 3.814 | 3.407 | -15.87 | 8.57 |
| HB2W6W | MCMP-H | 0.005 | 1.368 | 3.185 | 3.44 | 3.878 | 4.652 | -18.98 | 5.46 |
| HB2W6X | MCMP-I | 0.005 | 1.367 | 3.201 | 3.542 | 3.954 | 4.494 | -18.91 | 5.53 |
| HB2W6Y | PSMP-A | 0.007 | 1.368 | 3.233 | 3.436 | 3.894 | 3.676 | -19.13 | 5.31 |
| HB2W6Z | SMP-C | 0.538 | 1.368 | 3.208 | 3.56 | 3.805 | 6.638 | -21.73 | 2.71 |
| HB2W6ZA | MCMP-J | 0.005 | 1.367 | 3.181 | 3.547 | 4.006 | 4.252 | -19.35 | 5.09 |
| HB2W6ZB | MCMP-K | 0.001 | 1.368 | 3.257 | 3.582 | 3.853 | 4.775 | -19 | 5.44 |
| HB2W6ZC | MCMP-G | 0.010 | 1.367 | 3.207 | 3.552 | 3.751 | 4.258 | -18.05 | 6.39 |

$5 * \Delta \mathrm{G}_{\text {solv }}$ is the hydration free energy in the aqueous phase. All energies are in $\mathrm{kcal}^{\mathrm{mol}}{ }^{-1}$ at a temperature of 6298.15 K and a pressure of 1 atm .



BCIP-E


BCIP-F


BCIP-G



MCIP-F


MCIP-G


MCIP-I


MCMP-J



MCMP-K



MCMP-M


MCMP-L



MCMP-O


SIP-A


PSMP-A


SIP-B


PSMP-B


SIP-C


PSMP-C


SIP-D

Fig. S3. More optimized lowest-energy structures of $2 \mathrm{~B}(\mathrm{OH})_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ clusters at the $2 \omega \mathrm{~B} 97 \mathrm{XD} / 6-311++\mathrm{g}(3 \mathrm{df}, 3 \mathrm{pd})$ level. The yellow, green, and white balls are $\mathrm{B}, \mathrm{O}$, and H atoms, respectively.

## 4 4. Ployborate Distribution in Aqueous $\mathbf{H}_{3} \mathbf{B O}_{3}$ Solutions

The polyborate distribution in aqueous $\mathrm{H}_{3} \mathrm{BO}_{3}$ solutions at different temperatures was 6 calculated using measured pH (the acidity has been adjusted to the pD by $\mathrm{pD}=\mathrm{pH}+0.4^{4}$ ) and 7 literature equilibrium constants ${ }^{5,6}$ by Newton iteration algorithm, as Fig. S4 shows. The $\delta$ is the 8 mole of boron for individual polyborate divided by the moles of total boron ${ }^{7,8}$.

9 In aq. $\mathrm{H}_{3} \mathrm{BO}_{3}$ solutions, boron dominantly exist as $\mathrm{B}(\mathrm{OH})_{3}$ (over $95 \%$ ), other polyborate

11 has been discussed in our previous work ${ }^{7}$.


Figure S4. Polyborate distribution in aqueous $\mathrm{H}_{3} \mathrm{BO}_{3}$ solutions at different temperatures

## 5. Structure of Crystalline Orthoboric Acid ( $\left.\mathbf{H}_{3} \mathbf{B O}_{3}\right)$

|  | Space-group |  |  | P-1 (2) - triclinic |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
|  |  |  |  | $a=7.039(2) \AA ; b=7.053(2) \AA$ |  |  |  |
| I |  |  |  | $\mathrm{c}=6.57$ | (2) $\AA$ |  |  |
|  | Cell |  |  | $\alpha=92.58(2)^{\circ} ; \beta=101.17(2)^{\circ}$ |  |  |  |
| On- $\mathrm{H}^{-}-{ }^{\top} \mathrm{CO}^{\mathrm{B}}=0$ | $\gamma=119.83(2)^{\circ}$ |  |  |  |  |  |  |
| H ${ }^{\text {- }}$ - $\mathrm{H}_{+}$ | $\mathrm{V}=274.07(15) \AA^{3} \quad \mathrm{Z}=4$ |  |  |  |  |  |  |
|  | Atomic parameters |  |  |  |  |  |  |
| 1 | Atom | Ox. | Wyck. | Site | x/a | y/b | z/c |
| $11_{1} \mathrm{I}^{+} \mathrm{H}^{\prime}$ - | B1 | 3 | 2i | 1 | 0.646 | 0.427 | 0.258 |
| $1 \cdots \mathrm{~B}$ | B2 | 3 | 2i | 1 | 0.307 | 0.760 | 0.242 |
| 1 , $\mathrm{H}^{\text {l }}$, | O1 | -2 | 2i | 1 | 0.424 | 0.302 | 0.261 |
| 1 | O 2 | -2 | 2 i | 1 | 0.768 | 0.328 | 0.250 |
|  | O3 | -2 | 2 i | 1 | 0.744 | 0.650 | 0.261 |
|  | O4 | -2 | 2i | 1 | 0.532 | 0.885 | 0.250 |
| Zachariasen, W., Acta Crystallographica 1954, | O5 | -2 | 2 i | 1 | 0.214 | 0.540 | 0.244 |
|  | O6 | -2 | 2 i | 1 | 0.180 | 0.856 | 0.233 |
| 7 (4), 305-310 ${ }^{9}$. | H1 | 1 | 2 i | 1 | 0.347 | 0.361 | 0.255 |
|  | H2 | 1 | 2 i | 1 | 0.671 | 0.172 | 0.250 |
|  | H3 | 1 | 2 i | 1 | 0.89 | 0.709 | 0.252 |
| $\mathrm{r}_{\mathrm{B}-\mathrm{O}(\text { intra })}=1.36 \AA \mathrm{r}_{\mathrm{O}-\mathrm{O}(\text { intra) }}=2.36 \AA$ | H4 | 1 | 2i | 1 | 0.60 | 0.817 | 0.254 |
| $\mathrm{r}_{\mathrm{B}-\mathrm{H}(\text { intra) }}=1.92 \AA \mathrm{r}_{\mathrm{O}-\mathrm{H}(\text { intra })}=0.88 \AA$ | H5 | 1 | 2 i | 1 | 0.083 | 0.469 | 0.246 |
|  | H6 | 1 | 2i | 1 | 0.297 | 0.006 | 0.243 |
| $\mathrm{r}_{\mathrm{H}-\mathrm{Bonding}}=1.77 \AA \mathrm{r}_{\mathrm{B}-\mathrm{B} \text { (in plane) }}=4.089 \AA$ |  |  |  |  |  |  |  |
| $\mathrm{r}_{\mathrm{B}-\mathrm{B}(\text { inter layer })}=3.615 \AA$ |  |  |  |  |  |  |  |

## 6. The Structure of Bulk Water in Aqueous $\mathbf{H}_{3} \mathrm{BO}_{3}$ Solutions

The pair distribution functions of $\mathrm{O}_{(\mathrm{W})}-\mathrm{O}_{(\mathrm{W})}$ in aqueous $\mathrm{H}_{3} \mathrm{BO}_{3}$ solutions are shown in Fig. S 5 (a). The first-neighbor $\mathrm{O}_{(\mathrm{W})}-\mathrm{O}_{(\mathrm{W})}$ peak is observed at $\sim 2.73 \AA$, which is consistent well with the literature. ${ }^{3,10}$ The first $\mathrm{O}_{(\mathrm{W})}-\mathrm{O}_{(\mathrm{W})}$ peak shows none sensitive to the temperature and concentration. The averaged coordination number of $\mathrm{O}_{(\mathrm{W})}-\mathrm{O}_{(\mathrm{W})}$ is $4.36 \pm 1.04$ in B57W-298, about $3.92(1.96+0.98 \times 2)$ of them H-bond with the central water molecule. About $1 / 10$ of the water molecules $(0.44)$ act as the "interstitial water", which enters the first layer but does not directly bond with the central water molecule. Our previous work ${ }^{11}$ shows there are $1 / 3$ water molecules (1.6) act as the "interstitial water" in pure water. Thus, we can deduce that the near local structure of bulk water keeps stable in aqueous $\mathrm{H}_{3} \mathrm{BO}_{3}$ solution, the main feature is the "interstitial water" molecules goes into the $\mathrm{B}(\mathrm{OH})_{3}$ hydration sphere. The hydration numbers derived from $g_{\mathrm{O}(\mathrm{W})-\mathrm{O}(\mathrm{W})}(r)$ decrease to $4.28 \pm 1.09$ in B57W-373 with elevated temperature, and to $4.27 \pm 1.11$ in $\mathrm{B} 24 \mathrm{~W}-333$ with increasing concentration. The second sphere can be identified which spans from $3.39-5.64 \AA$, with the $C N \sim 18$. A more vaguer third sphere can be assigned also, however, it's too vague to do further to analysis their $C N s$.


Fig. S5. Pair distribution functions (a) and the coordination number distributions (b) of bulk water related interactions.

The SDFs of the water molecule around a central water molecule in aqueous $\mathrm{H}_{3} \mathrm{BO}_{3}$ solutions are shown in Fig.S6, where the range for each shell is defined as the local minimum of the $\mathrm{O}_{(\mathrm{W})}-\mathrm{O}_{(\mathrm{W})}$ pair correlation functions.


Fig. S6. Spatial density distribution functions of the neighbouring water molecules around a central water molecule. The brick-red lobes represent the first sphere within the distance limits of $0-3.39 \AA$, the greyish green and semi-transparent ones to the second sphere within the distance limits of $3.39-5.50 \AA$, and the blue meshed ones to the third sphere within the distance limits of 5.50-8.0 $\AA$. The red and white balls in the center represent O and H atoms of $\mathrm{H}_{2} \mathrm{O}$, respectively. A contour level of $35 \%$ was chosen for all the three water spheres, respectively.

As Fig. S6 shows, when the concentration and temperature increase, the first shell keeps the tetrahedral coordination accompanied with none obvious change in the distribution range indicates the tendency for keeping a tetrahedron structure of the first sphere is unaffected to some extent. The greyish green and semitransparent lobes of the second sphere diffuse in a larger range, compared with those at low $\mathrm{H}_{3} \mathrm{BO}_{3}$ concentration and lower temperature. In the limited temperature range of 298-373 K, the temperature effects are slight in the SDFs for the first sphere, while much more significant effect is observed for the second and the third spheres.

## 7. ESP of $\mathrm{B}(\mathrm{OH})_{3}$ and Water by DFT and Wave Function Analysis

2 The quantitively electrostatic potentials (ESP) on the 0.001 au molecular surfaces of $3 \mathrm{~B}(\mathrm{OH})_{3}$ and $\mathrm{H}_{2} \mathrm{O}$ molecular is calculated by DFT at $6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ with Gaussian $16 \mathrm{~B}^{12}$ and 4 wave function analysis with Mutiwfn ${ }^{13}$.


6 Fig. S7. the computed electrostatic potentials on the 0.001 au molecular surfaces of $\mathrm{H}_{2} \mathrm{O}$ (left) and $7 \mathrm{~B}(\mathrm{OH})_{3}$ (right) molecules. The yellow and celeste hemispheres indicate the positions of the most positive and negative potentials, respectively.
8. Angular Distribution Function (ADF) for $\mathbf{H}$-bonds


Fig. S8. Normalized probability distributions for the hydrogen bonding related with $\mathrm{B}(\mathrm{OH})_{3}$ hydration i.e $\angle \mathrm{O}-\mathrm{H}(\mathrm{B}) \ldots \mathrm{O}(\mathrm{W})$ and $\angle \mathrm{O}(\mathrm{B}) \ldots \mathrm{H}-\mathrm{O}(\mathrm{W})$, and for the hydrogen bonding in bulk water i.e. $\angle \mathrm{O}-\mathrm{D} \ldots \mathrm{D}(\mathrm{W})$ at different $\mathrm{H}_{3} \mathrm{BO}_{3}$ concentrations and temperatures.

The directionality of H -bonds in bulk water and $\mathrm{B}(\mathrm{OH})_{3}$ hydration is examined through the angular distribution function (ADF). As Fig. S8 of SI shows, all the interactions of H-bonds are predominantly linear with the $\angle \mathrm{O}-\mathrm{H}(\mathrm{W}) \ldots \mathrm{O}(\mathrm{W})$ peak at $\sim 180^{\circ}$, matching what would be expected for H -bonds in the bulk water. Both $\angle \mathrm{O}-\mathrm{H}(\mathrm{B}) \ldots \mathrm{O}(\mathrm{W})$ (boron hydroxyl donates) and $\angle \mathrm{O}(\mathrm{B}) \ldots \mathrm{H}-\mathrm{O}(\mathrm{W})$ (boron hydroxyl accepts) angle distributions have a peak at $180^{\circ}$, while they are much wider span than the H -bonds in bulk water, indicating more flexibility and less directionality comparing with the hydrogen bonding between water molecules. It reflects a slightly weaker bond compared with the H -bonds between water molecules, and it is well consistent with the ESP of $\mathrm{H}_{3} \mathrm{BO}_{3}$ and water also.

## 9. $\mathbf{B}(\mathbf{O H})_{3}$ Molecular Clusters in Aq. Solutions

$\mathrm{B}(\mathrm{OH})_{3}$ association can be derived from $g_{\mathrm{B}-\mathrm{B}}(r), g_{\mathrm{B}-\mathrm{O}(\mathrm{B})}(r)$, and $g_{\mathrm{O}(\mathrm{B})-\mathrm{O}(\mathrm{B})}(r)$ etc. (Fig. S9). There are peaks at $\sim 4.1 \AA, \sim 3.7 \AA$ and $\sim 1.9 \AA$ definitely indicates the existence of $\mathrm{B}(\mathrm{OH})_{3}$ molecular clusters. Details information about the $g_{\mathrm{B}-\mathrm{B}}(\mathrm{r})$ has been discussed in the $\mathrm{MS} . \mathrm{B}(\mathrm{OH})_{3}$ have triangular configuration. As the Fig. S9 shows, there is a peak at $\sim 3.7 \AA$ and a shoulder around $5.28 \AA$ in the $g_{\mathrm{B}}$ $\mathrm{O}(\mathrm{B})(\mathrm{r})$, which can be assigned to the $\mathrm{O}(\mathrm{B})$ which contact with other $\mathrm{B}(\mathrm{OH})_{3}$ directly through H -bonds and the $\mathrm{O}(\mathrm{B})$ that doesn't contact with the $\mathrm{B}(\mathrm{OH})_{3}$ directly, respectively. The interaction number with the local minimum $(7.05 \AA$ ) as the cut off distance increase with temperature and concentration (Table 3). Here, we must reiterate the cut-off distance sensitive of the $g_{\mathrm{B}-\mathrm{O}(\mathrm{B})}(r)$, the $C N$ must be considered cautiously. A more reliable interaction numbers can be derived from $g_{\mathrm{OB})-\mathrm{H}(\mathrm{B})}(r)$, as Table 3 shows, the same as $g_{\mathrm{B}-\mathrm{O}(\mathrm{B})}(\mathrm{r})$, we can get the conclusion that both temperature and concentration intensifies the association between $\mathrm{B}(\mathrm{OH})_{3}$ molecules. In aqueous solution $\mathrm{B}(\mathrm{OH})_{3}$, hydration and $\mathrm{B}(\mathrm{OH})_{3}$ association are competition processes, temperature and concentration have an opposite effect for $\mathrm{B}(\mathrm{OH})_{3}$ hydration and association.

2 Fig. S9. Pair distribution functions (a) and the coordination number distributions (b) of $\mathrm{B}(\mathrm{OH})_{3}$



## 10. Multi-peak Fitting for $g_{B-B}(r)$

The peak analyzer plug-in in Originlab ${ }^{\mathrm{TM}} 9.5$ software was employed to get the property of a specific interaction's PDF peak by deconvolving the diffused $g_{\mathrm{B}-\mathrm{B}}(r)$ first peak. In fact, all methodology for deconvolving the diffuse peaks requires a certain mathematical model to describe the peak shape characteristics of the components. Here, the most frequently used 10 Gaussian function (as follows) is chosen in the present work.

$$
y=y_{0}+\frac{A e^{\frac{-4 \ln (2)\left(x-x_{c}\right)^{2}}{w^{2}}}}{w \sqrt{\frac{\pi}{4 \ln (2)}}}
$$


where $A$ is the peak area, $x_{\mathrm{c}}$ is the peak position, and $w$ is the full width at half maximum (FWHM). The $A, x_{\mathrm{c}}$ and $w$ obtained through deconvolution reflect the coordination number (qualitatively), the interaction distance and the disorder degree (temperature factor)

```
1 respectively
```

2
Table S5. Multi-peak fitting parameters of $g_{\mathrm{B}-\mathrm{B}}(r)$.

| Sample | Peaks | Center/ $\AA$ | FWHM $/ \AA$ | Hight | Area | Area $/ \%$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B57W-298 | PSMP | 3.6683 | 0.67156 | 0.55375 | 0.39585 | 15.47 |
| $\left(\mathrm{R}^{2}=0.99712\right)$ | BCMP | 4.17561 | 0.99157 | 1.23957 | 1.30836 | 51.12 |
|  | MCMP | 4.78265 | 1.39219 | 0.5771 | 0.85523 | 33.41 |
| B57W-373 | PSMP | 3.66876 | 0.6848 | 0.48875 | 0.35627 | 11.59 |
| $\left(\mathrm{R}^{2}=0.99751\right)$ | BCMP | 4.19067 | 0.96727 | 1.44062 | 1.48329 | 48.25 |
|  | MCMP | 4.86145 | 1.34023 | 0.86569 | 1.23481 | 40.16 |
| B24W-333 | PSMP | 3.7495 | 0.67332 | 0.85532 | 0.61303 | 17.03 |
| $\left(\mathrm{R}^{2}=0.99909\right)$ | BCMP | 4.23354 | 0.95337 | 1.58703 | 1.61056 | 44.75 |
|  | MCMP | 4.85093 | 1.39424 | 0.92685 | 1.37555 | 38.21 |
| B24W-373 | PSMP | 3.76945 | 0.70199 | 0.99501 | 0.61351 | 15.98 |
| $\left(\mathrm{R}^{2}=0.99913\right)$ | BCMP | 4.26532 | 0.96454 | 1.70859 | 1.75423 | 45.68 |
|  | MCMP | 4.86866 | 1.39227 | 0.90636 | 1.47277 | 38.35 |

3
4 * PSMP, BCMP and MCMP are paralleled-solvent-shared molecular pairs, bi-dentate contact 5 molecular pair, and the mono-dentate contact molecular pair, respectively.

## 7 11. Weak Interaction in Crystalline Orthoboric Acid

8 Weak interactions in crystalline orthoboric acid were revealed through RDG and $9 \operatorname{Sign}(\mathrm{k} 2)^{*} \mathrm{q}$ function. The electron density of the unit cell is reproduced by B3LYP/6-31G(d, p) 10 calculation with Gaussian $16 \mathrm{~B}^{12}$. The Multiwfn software ${ }^{13}$ to get the reduced density gradient 11 (RDG) and $\operatorname{Sign}\left(\lambda_{2}\right)^{*} \rho$ function ${ }^{14}$,VMD is used to plot the graphs ${ }^{15}$. As Fig. S10 shows, the electrostatic H -bond interaction is the dominant interaction in the layer, while interlayer the van 13 der Waals interaction is dominated.


Fig. S10. Reduced density gradient isosurface map with isovalue of 0.5 for crystalline orthoboric acid $\left(\mathrm{H}_{3} \mathrm{BO}_{3}\right)$. The value of $\operatorname{Sign}\left(\lambda_{2}\right)^{*} \rho$ in surfaces is represented by filling color according to the color bar in the bottom. The pink, red, and white ball is boron, oxygen, and hydrogen atoms, respectively; the red dot line is the hydrogen bond.

## References

1. N. P. Nies and R. W. Hulbert, J. Chem. Eng. Data, 1967, 12, 303-313.
2. F. Risplendi, F. Raffone, L.-C. Lin, J. C. Grossman and G. Cicero, J. Phys. Chem. C, 2020, 124, 1438-1445.
3. A. K. Soper, Chem. Phys., 2000, 258, 121-137.
4. K. A. Rubinson, Anal. Methods, 2017, 9, 2744-2750.
5. R. E. Mesmer, C. F. Baes and F. H. Sweeton, Inorg. Chem., 1972, 11, 537-543.
6. O. Weres, J. Solution Chem., 1995, 24, 409-438.
7. Y. Zhou, C. Fang, Y. Fang and F. Zhu, Spectrochim. Acta Part A, 2011, 83, 82-87.
8. C. Fang, Y. Zhou, Y. Fang, F. Zhu, Q. Chen, H. Ge,, J. Chem. Soc. Pakistan, 2013, 35, 1066-1072.
9. W. Zachariasen, Acta Crystallog., 1954, 7, 305-310.
10. T. Yamaguchi, K. Fujimura, K. Uchi, K. Yoshida and Y. Katayama, J. Mol. Liq., 2012, 176, 44-51.
11. Y. Zhou, T. Yamaguchi, K. Ikeda, C. Fang, K. Yoshida, W. Zhang, F. Zhu, H. Liu, G. Wang, Chem. Bull., 2020, 83(5),434-441.
12. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
13. T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580-592.
14. E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen and W. Yang, J. Am. Chem. Soc., 2010, 132, 6498-6506.
15. W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph. Model., 1996, 14, 33-38.
