Supplementary Information

Structural Characteristics of Oligomers formed by Pyroglutamate-Modified Amyloid β Peptides Studied by Solid-State NMR

Holger A. Scheidt^{1,*}, Anirban Das², Alexander Korn¹, Martin Krueger³, Sudipta Maiti², Daniel Huster^{1,2}

¹ Institute for Medical Physics and Biophysics, Leipzig University Härtelstr. 16-18, D-04107 Leipzig, Germany

² Department of Chemical Sciences Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India

³ Institute of Anatomy, Leipzig University, Liebigstraße 13, 04103 Leipzig, Germany

* *E-mail: holger.scheidt@medizin.uni-leipzig.de*

Scheme S1: Overview of the ¹³C/¹⁵N-labeled amino acids in the different peptides used in this study. The labeled amino acids are shown in red:

pE3-Aβ(3-40):

- 1) pEFRHDSGY EVHHQKLVFF AEDVGSNKGA IIGLMVGGVV
- 2) pEFRHDSGY EVHHQKLVFF AEDVGSNKGA IIGLMVGGVV
- 3) pEFRHDSGY EVHHQKLVFF AEDVGSNKGA IIGLMVGGVV

pE11-Aβ(11-40):

- 1) pEVHHQKLVFF AEDVGSNKGA IIGLMVGGVV
- 2) pEVHHQKLVFF AEDVGSNKGA IIGLMVGGVV
- 3) pEVHHQKLVFF AEDVGSNKGA IIGLMVGGVV
- 4) **pE**VHHQKLVFF AEDVGSNKGA IIGLMVGGVV

	Table S1 Isotrop	bic chemical shifts	(relative to TMS) for pE ₃ -Aβ(3-40) Oligomers
--	------------------	---------------------	------------------	--------------------------------	-------------

Amino Acid	Cα/ ppm	Cβ/ ppm	C=O/ ppm	Cγ/ ppm	Cδ/ ppm	Cε/ ppm	N/ ppm
Phe 4	54.1	36.1/39.7	173.1				n.d.
Asp 7	50.5	38.8	172.0				n.d.
Ser 8	55.5/56.3	62.4/61.9	171.3				120.1
Gly 9	42.4		170.0				n.d.
Glu 11	53.3	31.7	172.4	33.6	180.6		n.d.
Val 12	58.8	31.3/29.9	173.0	19.4			n.d.
Phe 19	54.3	40.2	172.7				118.7
Glu 22	51.7	29.9	171.8	31.2	n.d.		124.2
Gly 29	44.1/42.9 ¹		169.1				n.d.
lle 31	57.7/57.1 ¹	39.4	172.0	25.2	15.0	10.8	n.d.
Leu 34	51.6	44.4	172.0	24.2	22.1		120.0.
Val 36	57.7	33.2	172.2	19.0			n.d

¹ two signals observed, strongest signal listed first, n.d.-not detected due to insufficient signal to noise

Table S2 Isotropic chemical shifts (relative to TMS) for pE_{11} -A β (11-40) Oligomers

Amino Acid	$C\alpha$ / ppm	Cβ/ ppm	C=O/ ppm	Cγ/ ppm	Cδ/ ppm	Cε/ ppm	N/ ppm
pGlu 11	57.1	26.0	174.4	30.2	182.0		125.3
Val 12	58.6/60.3	30.3/31.4	172.7	19.2			n.d.
Leu 17	52.2	44.1	172.8	24.0	24.0		114.1
Phe 19	53.6	44.0	n.r.				124.2
Ala 21	48.4	20.7	n.r.				n.d.
Glu 22	52.7	31.8	173.6	33.1	181.6		117.7
Asp 23	51.8	40.0	173.3	179.2/177.7			124.1
Gly 25	42.8		170.4				110.3
Lys 28	54.0	34.3	174.4	23.0	28.4	39.2	119.7
Gly 29	43.0		169.9				109.0/106.7 ¹
lle 31	58.1	40.2	172.3	26.1	15.4	12.1	114.3
Gly 33	43.2		168.6				111.9
Leu 34	51.4	44.0	n.r.	24.5	25.0		117.2
Gly 37	42.9		170.0				n.d.
Val 39	59.1	28.7	172.3/173.7	19.2			112.5

¹ two signals observed, strongest signal listed first, n.d.-not detected due to insufficient signal to noise, n.r. –not resolved in 2D spectrum

Figure S1: Fluorescence emission of TPE-TPP as a function of time, when incubated with WT- $A\beta(1-40)$. (A) shows the emission spectra at 5 different time points, at an interval of 30 mins, t = 0 (red), 30 mins (blue), 1 hr (green), 1.5 hrs (purple) and 2 hours (orange). (B) Same data as in panel A, area normalized, inset shows the zoomed in version of (B).

Figure S2:13C Chemical Shift /ppmFigure S2:Example of the 13C CP MAS NMR spectra of oligomers (above) and mature fibrils
(below) of pE3-A β (3-40) peptide II at a MAS frequency of 11777 Hz and a temperature
of 30°C. The spectrum of the mature fibrils was taken from [1].

Figure S3: Example of the ¹³C CP MAS NMR spectra of oligomers (above) and mature fibrils (below) of pE_{11} -A β (11-40) peptide V at a MAS frequency of 11777 Hz and a temperature of 30°C. The spectrum of the mature fibrils was taken from [2].

Figure S4: ¹³C-¹³C DARR MAS NMR spectra of oligomers of pGlu₃-Aβ(3-40) peptide I (above) and pGlu₁₁-Aβ(11-40) peptide IV (below) with a DARR mixing time of 500 ms at a MAS frequency of 11,777 Hz and a temperature of 30°C with the respective assignment. The green boxes indicate interresidual crosspeaks between Phe₁₉ and Leu₃₄.

References:

- [1] H. A. Scheidt, J. Adler, M. Krueger and D. Huster, Sci. Rep., 2016, 6, 33531.
- [2] H. A. Scheidt, J. Adler, U. Zeitschel, C. Hofling, A. Korn, M. Krueger, S. Rossner and D. Huster, *Chemistry.*, 2017, 23, 15834-15838.