Electronic Supplementary Information (ESI)

Effect of Crystallite Size on the Phase Transition Behavior of Heterosite FePO₄

Azeem Banday^a, Raza Shahid^b, Sher Singh Meena^c, S. M. Yusuf^{c,d} and Sevi Murugavel^{*a}

^aDepartment of Physics & Astrophysics, University of Delhi, Delhi - 110007, India ^bDepartment of Physics, Jamia Millia Islamia, New Delhi, India ^cSolid State Physics Division, Bhabha Atomic Research Centre, Mumbai - 400085, India ^dHomi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India

Fig. S1: XRD patterns of as-prepared different crystallite sized LiFePO₄ samples before chemical delithiation.

Fig. S2: TEM images along with its HRTEM pattern for (a) 59 nm, and (b) 21 nm crystallite sizes of h-FP.

Fig. S3: FESEM images of (a) 59 nm, and (b) 21 nm crystallite sizes of h-FP along with the particle size distribution histograms.

Fig. S4: Crystal structure of (a) heterosite $FePO_4$ and (b) trigonal $FePO_4$ as visualized by using VESTA software

Fig. S5: ⁵⁷Fe Mössbauer spectra of heterosite $FePO_4$ with 48nm crystallite size recorded at 303 K. Experimental (filled circle) and fitted spectra (black solid line) are represented. Additional solid lines illustrate contributions from the primary Fe^{3+} (doublet-A and C) and secondary Fe^{2+} components (doublet B: blue line) and they are described in the text.

Fig. S6: ⁵⁷Fe Mössbauer spectra of heterosite FePO₄ with 21nm crystallite size recorded at 303 K. Experimental (filled circle) and fitted spectra (black solid line) are represented. Additional solid lines illustrate contributions from the primary Fe³⁺ (doublet-A and C) and secondary Fe²⁺ (doublet-B) components and they are described in the text. The appearance of sextet (green line) is visible for the lower crystallite sized h-FP and is due to the trigonal FP phase.

Fig. S7: Magnetic hysteresis (M-H) loops for (a) 59 nm crystallite size sample showing a paramagnetic behaviour and (b) 21nm crystallite size sample showing a weak ferromagnetic behaviour.

Crystallite Size (nm)	Temperature (K)	Time period (Hour)	
58	1023	6	
48	1023	4	
41	973	12	
32	823	12	
11	823	2	

 Table S1: The synthesis parameters used for different crystallite sized LFP samples

Table S2 (a): Crystal structure related parameters obtained from the Rietveld refinement									
method for h-FP phase with 59 nm crystallite size									
		Wavelength (Å)		0.78283				
	:	Space group ()	No.)		Pnma(62)				
		a (Å)			9.81067				
		b (Å)			5.78954				
		c (Å)			4.77567				
	r	V (Å ³)			271.25431				
		R _p (%)			14.8				
R _{wp} (%)				12.8					
R_{exp} (%)					5.69				
GoF (χ^2)				5.07					
Atomic	Atomic coordinates								
Site	Wyck.	x/a	y/b	z/c	S.O.F	B _{iso}			
Fe	4c	0.27191	0.25000	0.94371	0.995	0			
Р	4c	0.09254	0.25000	0.39859	1	0			
O(1)	4c	0.13851	0.25000	0.70173	0.996	0			
O(2)	4c	0.44726 0.25000		0.15682	1	0			
O(3)	8d	0.17660	0.00834	0.25362	0.995	0			

Table S2 (b): Crystal structure related parameters obtained from the Rietveld refinement								
method for h-FP phase with 21 nm crystallite size								
	Wavelength (Å)				0.78283			
	Space group (no.)				Pnma(62)			
a (Å)					9.84573			
b (Å)					5.81157			
c (Å)					4.79143			
V (Å ³)				274.16139				
R _p (%)				6.00				
R _{wp} (%)					6.84			
R _{exp} (%)				2.37				
GoF (χ^2)				8.31				
Atomic coordinates								
Site	Wyck.	x/a	y/b	z/c	S.O.F	B _{iso}		
Fe	4c	0.27055	0.25000	0.94550	0.9601	0		
Р	4c	0.09622	0.25000	0.39354	1	0		
O(1)	4c	0.12821	0.25000	0.69517	1.0085	0		
O(2)	4c	0.44169	0.25000	0.14165	0.9383	0		
O(3)	8d	0.17093	0.02245	0.24205	0.9962	0		

Table S3: Summary of extracted particle and crystallite size from FESEM, XRD and
HRTEM method.

Particle size (nm) ± 15 nm		Crystallite size (nm) ± 2 nm			
FESEM	TEM	Scherrer's formula	HRTEM		
300	300	59	60		
220	200	48	46		
120	105	40	42		
80	85	29	27		
70	65	21	20		

Table S4: The Hyperfine magnetic field (H_{hf}), isomer shift (δ), quadrupole splitting (ΔE_Q : doublet and Δ : sextet), outer linewidth (Γ) and relative areas (R_A) in percentage of different sites of Fe³⁺ or Fe²⁺ ions for all five samples derived from Mössbauer spectra recorded at room temperature. Isomer shift values are relative to Fe metal foil ($\delta = 0.0 \text{ mms}^{-1}$). χ^2 : goodness of fit.

Sample	Iron	$H_{ m hf}$	ΔE_Q	δ	Г	R _A	χ^2
(code)	Sites	(Tesla)	(mms ⁻¹)	(mms ⁻¹)	(mms ⁻¹)	(%)	
		± 0.01	±0.01	± 0.01	±0.03		
21 nm	Sextet (Fe ³⁺)	49.82	-0.023	0.246	0.818	35.8	
	Doublet-A (Fe ³⁺)		1.549	0.383	0.297	32.1	1 2 2 0
	Doublet-B (Fe ²⁺)		2.858	1.240	0.40	2.6	1.328
	Doublet-C (Fe ³⁺)		0.724	0.356	0.569	29.5	
29 nm	Sextet (Fe ³⁺)	50.18	0.031	0.329	0.681	26.3	
	Doublet-A (Fe ³⁺)		1.547	0.440	0.286	40.9	1 1 1 0
	Doublet-B (Fe ²⁺)		2.558	1.231	0.482	11.4	1.148
	Doublet-C (Fe ³⁺)		0.633	0.436	0.451	21.4	
40 nm	Doublet-A (Fe ³⁺)		1.562	0.437	0.287	46.1	
	Doublet-B (Fe ²⁺)		2.375	1.258	0.652	7.1	1.115
	Doublet-C (Fe ³⁺)		0.702	0.415	0.336	46.8	
48 nm	Doublet-A (Fe ³⁺)		1.555	0.442	0.269	49.4	
	Doublet-B (Fe ²⁺)		2.543	1.283	0.820	13.4	1.275
	Doublet-C (Fe ³⁺)		0.689	0.418	0.478	37.2	
59 nm	Doublet-A (Fe ³⁺)		1.562	0.436	0.270	28.0	
	Doublet-B (Fe ²⁺)		2.538	1.196	0.489	9.7	1.390
	Doublet-C (Fe ³⁺)		0.662	0.435	0.474	62.3	