Electronic Supplementary Information (ESI)

PtN₃-Embedded Graphene as an Efficient Catalyst for Electrochemical Reduction

of Nitrobenzene to Aniline: a Theoretical Study

Shuang Wang,^a Yuejie Liu,^{b,*} Jingxiang Zhao^{a,*}

^a College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and

Electronic Bandgap Materials, Ministry of Education, Harbin Normal University,

Harbin, 150025, China

^b Modern Experiment Center, Harbin Normal University, Harbin, 150025, China

* To whom correspondence should be addressed. Email: xjz_hmily@163.com or zhaojingxiang@hrbnu.edu.cn (JZ) ; zjx1103@hotmail.com (YL)

Computional Details on Dissolution Potential and Overpotential

To evaluate the stability of TMN₃/G monolayer in strong acidic media, we computed the dissolution potentials (U_{dis} , in V) of TM in TMN₃/G monolayer at pH=0, defined as: $U_{dis} = U_{TM}^{0} + \left[E_{TM,bulk} - \left(E_{TMN_3/G} - E_{N_3/G}\right)\right]/ne$, where U_{TM}^{0} is the standard dissolution potential of TM in the bulk form,¹ N₃/G is the N-doped defective graphene, and *n* is the coefficient for the aqueous dissolution reaction: TM + nH⁺ \leftrightarrow TMⁿ⁺ + n/2H₂. For example, for PtN₃/G, the U_{dis} value can be derived from: Pt + 2H⁺ \leftrightarrow Pt²⁺ + H₂, and U_{Pt}^{0} value is 1.18 V. Thus, the U_{dis} value of Pt in PtN₃/G was computed to be about 1.24 V.

On the other hand, the overpotential (η) value was obtained according to the following equation: $\eta = U_0 - U_L$, where U_0 is the equilibrium potential of Ph-NO₂ to Ph-NH₂ ($U_0 = -(\Delta G)/n$), and U_L is the limiting potential of NBER on TMN₃/G monolayer. Since the ΔG value for NBER (Ph-NO₂ + 6H⁺ + 6e⁻ \rightarrow Ph-NH₂ + 2H₂O in Fig. 5) was computed to be -4.42 eV, the computed U_0 is [-(-4.42)/6) = 0.75 V]. Thus, the negative overpotential (- η) of NBER on PtN₃/G is -[0.75 V - (-0.21 V)] = -0.96 V, which is much smaller than the U_{dis} value of Pt (1.24 V), suggesting that Pt within the PtN₃/G framework can survive under the realistic experimental conditions of NBER, and thus ensuring its excellent long-term stability. According to the above method, Fig. 1c in main text can be obtained.

References

1. Greeley, J.; Nørskov, J. K., Electrochimica Acta 2007, 52, 5829-5836.

Table S1. The computed limiting potential (U_L, V) of NBER on PtN₃/G using different supercell sizes.

supercell	UL
5×5	-0.21
6×6	-0.22
7×7	-0.22

Fig. S1. The computed projected density of states (PDOSs) of (a) CuN₃/G, (b) NiN₃/G, (c) PdN₃/G, and (d) PtN₃/G. The Fermi level was set to zero.

Fig. S2. The obtained most stable adsorption configurations of Ph-NO₂ molecule on the surfaces of (a) CuN_3/G , (b) NiN_3/G , and (c) PdN_3/G .

Fig. S3. Calculated adsorption energy (E_{ads}) plotted versus (a) limiting potential (U_L) and (b) d-band center (ε_d) .

Fig. S4. Snapshots of PtN_3/G equilibrium structure at 500 K after 10 ps MD simulations.

Fig. S5. The computed band structure of PtN₃/G. The Fermi level is set to zero in red dashed line.