Polarization-Dependent Vibrational Shifts on Dielectric Substrates

C. Yang, ${ }^{1,2}$ W. Wang, ${ }^{2}$ A. Nefedov, ${ }^{2}$ Y. Wang, ${ }^{2}$ T. G. Mayerhöfer, ${ }^{3,4,{ }^{*}}$ C. Wöll2,*
${ }^{1}$ Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and Environment, Beihang University, Beijing, 100191, China
${ }^{2}$ Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
${ }^{3}$ Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, D-07745 Jena, Germany
${ }^{4}$ Institute of Physical Chemistry, and Abbe Center of Photonics, Friedrich Schiller University, Jena D-07743, Helmholtzweg 4, Germany

Combined Matrix formalism for the calculation of reflectance and transmittance of layered anisotropic media

The following combined matrix formalism has been introduced in [1].
The dielectric tensor of a medium is usually specified with regard to an intrinsic coordinate system x, y, z of a sample. To find the values of $\boldsymbol{\varepsilon}_{x, y, z}$ in a reference frame X, Y, Z it is necessary to employ an orthogonal transformation according to

$$
\varepsilon_{X, Y, Z}=\mathbf{A}(\Omega) \cdot \boldsymbol{\varepsilon}_{x, y, z} \cdot \mathbf{A}(\Omega)^{-1}, \quad \quad \mid * \text { MERGEFORMAT (1) }
$$

where $\mathbf{A}(\Omega)$ is a rotation matrix. A convenient way of expressing $\mathbf{A}(\Omega)$ is e.g. to specify it by one of the 24 possible Euler angle orientation representations.[2] Further possibilities are symmetric Euler angle representations and Quarternions.[2]

In the following we assume a layered system with plane parallel interfaces normal to the Z-direction of a references frame and a plane wave with wave-vector \mathbf{k}_{i} given by $\mathbf{k}_{i}=k_{0}\left(0, k_{Y}, k_{Z}\right)^{T}$ incident on this system (light wave incident in the Y Z plane with an angle of incidence α). Employing first-order Maxwell-equations the dependence of the field-vector $\boldsymbol{\Psi}=\left(E_{X}, \quad H_{Y}, \quad E_{Y}, \quad-H_{X}\right)^{T}$ in Z-direction can be written as

$$
\frac{\partial}{\partial Z} \psi=i k_{0} \Delta \psi,
$$

।* MERGEFORMAT (2)
where Δ represents a 4×4 matrix according to

$$
\Delta=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-\sin ^{2} \alpha+\varepsilon_{X X}-\frac{\varepsilon_{X Z}{ }^{2}}{\varepsilon_{Z Z}} & 0 & \varepsilon_{X Y}-\frac{\varepsilon_{X Z} \varepsilon_{Y Z}}{\varepsilon_{Z Z}} & -\frac{\varepsilon_{X Z} \sin \alpha}{\varepsilon_{Z Z}} \\
-\frac{\varepsilon_{X Z} \sin \alpha}{\varepsilon_{Z Z}} & 0 & -\frac{\varepsilon_{Y Z} \sin \alpha}{\varepsilon_{Z Z}} & 1-\frac{\sin \alpha}{\varepsilon_{Z Z}} \\
\varepsilon_{Y X}-\frac{\varepsilon_{Y Z} \varepsilon_{X Z}}{\varepsilon_{Z Z}} & 0 & \varepsilon_{Y Y}-\frac{\varepsilon_{Y Z}{ }^{2}}{\varepsilon_{Z Z}} & -\frac{\varepsilon_{Y Z} \sin \alpha}{\varepsilon_{Z Z}}
\end{array}\right), \quad \quad \quad \text { MERGEFORMAT (3) }
$$

To obtain the Eigenvalues of the matrix Δ the following equation must be solved:

$$
\operatorname{Det}(\Delta-\gamma \mathbf{I})=0
$$

This yields a quartic equation in γ, called the Booker quartic,

$$
\begin{equation*}
\gamma^{4}+\alpha_{1} \gamma^{3}+\alpha_{2} \gamma^{2}+\alpha_{3} \gamma+\alpha_{4}=0 \tag{5}
\end{equation*}
$$

The four solutions of γ are given by,

$$
\begin{aligned}
& \gamma_{1}=-\frac{1}{12}\left(3 \alpha_{1}+\sqrt{3 K_{4}}+\sqrt{6\left(K_{5}+K_{6}\right)}\right) \\
& \gamma_{2}=-\frac{1}{12}\left(3 \alpha_{1}+\sqrt{3 K_{4}}-\sqrt{6\left(K_{5}+K_{6}\right)}\right) \\
& \gamma_{3}=-\frac{1}{12}\left(3 \alpha_{1}-\sqrt{3 K_{4}}+\sqrt{6\left(K_{5}-K_{6}\right)}\right) \\
& \gamma_{4}=-\frac{1}{12}\left(3 \alpha_{1}-\sqrt{3 K_{4}}-\sqrt{6\left(K_{5}-K_{6}\right)}\right)
\end{aligned}
$$

।* MERGEFORMAT (6)
with the abbreviations:

$$
\begin{aligned}
& K_{1}=2 \alpha_{2}^{3}-9 \alpha_{1} \alpha_{2} \alpha_{3}+27 \alpha_{3}^{2}+27 \alpha_{1}^{2} \alpha_{4}-72 \alpha_{2} \alpha_{4} \\
& K_{2}=\alpha_{2}^{2}-3 \alpha_{1} \alpha_{3}+12 \alpha_{4} \\
& K_{3}=\left(K_{1}+\sqrt{\left.K_{1}^{2}-4 K_{2}^{3}\right)^{1 / 3}}\right. \\
& K_{4}=3 \alpha_{1}^{2}-8 \alpha_{2}+\frac{4 \times 2^{1 / 3} K_{2}}{K_{3}}+2 \times 2^{2 / 3} K_{3} \\
& K_{5}=3 \alpha_{1}^{2}-8 \alpha_{2}-\frac{2 \times 2^{1 / 3} K_{2}}{K_{3}}-2^{2 / 3} K_{3} \\
& K_{6}=\frac{3 \sqrt{3}\left(\alpha_{1}^{3}-4 \alpha_{1} \alpha_{2}+8 \alpha_{3}\right)}{\sqrt{K_{4}}}
\end{aligned} .
$$

।* MERGEFORMAT (7)

Two of the solutions for γ belong to forward traveling waves. For these a positive sign is characteristic if the solutions are real. Otherwise the forward direction is indicated by a positive imaginary part (note that the identification must be repeated separately for each wavelength and each layer!). We denote the two solutions, which belong to forward traveling waves by γ_{+I} and $\gamma_{+I I}$ and the corresponding solutions for backward traveling waves by γ_{-I} and $\gamma_{-I I}$.

The corresponding Eigenvectors can be determined by putting each γ_{i} into the homogeneous system of linear equations

$$
\left(\begin{array}{cccc}
\Delta_{11}-\gamma & \Delta_{12} & \Delta_{13} & \Delta_{14} \\
\Delta_{21} & \Delta_{22}-\gamma & \Delta_{23} & \Delta_{24} \\
\Delta_{31} & \Delta_{32} & \Delta_{33}-\gamma & \Delta_{34} \\
\Delta_{41} & \Delta_{42} & \Delta_{43} & \Delta_{44}-\gamma
\end{array}\right) \cdot\left(\begin{array}{l}
\Psi_{1} \\
\Psi_{2} \\
\Psi_{3} \\
\Psi_{4}
\end{array}\right)=\mathbf{0}
$$

।* MERGEFORMAT (8)
and by solving simultaneously three of the four equations in eqn. ${ }^{*}$ MERGEFORMAT (8). This yields solutions of three components of Ψ in terms of a fourth, which is arbitrary.

The following two solutions for the eigenvectors have been obtained based on Cramer's rule, where the subscripts indicate the choice of the equations from eqn. (15).

$$
\left.\Psi_{1,2,3, i}=\left(\begin{array}{c}
\operatorname{Det}\left|\begin{array}{ccc}
\Delta_{14} & \Delta_{12} & \Delta_{13} \\
\Delta_{24} & \Delta_{22}-\gamma_{i} & \Delta_{23} \\
\Delta_{34} & \Delta_{32} & \Delta_{33}-\gamma_{i}
\end{array}\right| \\
\operatorname{Det}\left|\begin{array}{ccc}
\Delta_{11}-\gamma_{i} & \Delta_{14} & \Delta_{13} \\
\Delta_{21} & \Delta_{24} & \Delta_{23} \\
\Delta_{31} & \Delta_{34} & \Delta_{33}-\gamma_{i}
\end{array}\right| \\
\operatorname{Det}\left|\begin{array}{ccc}
\Delta_{11}-\gamma_{i} & \Delta_{12} & \Delta_{14} \\
\Delta_{21} & \Delta_{22}-\gamma_{i} & \Delta_{24} \\
\Delta_{31} & \Delta_{32} & \Delta_{34}
\end{array}\right|, \Psi_{2,3,4, i}=\left(\left.\begin{array}{ccc}
\Delta_{24} & \Delta_{22}-\gamma_{i} & \Delta_{23} \\
\Delta_{34} & \Delta_{32} & \Delta_{33}-\gamma_{i} \\
\Delta_{44}-\gamma_{i} & \Delta_{42} & \Delta_{43}
\end{array} \right\rvert\,\right. \\
\operatorname{Det}\left|\begin{array}{ccc}
\Delta_{21} & \Delta_{24} & \Delta_{23} \\
\Delta_{31} & \Delta_{34} & \Delta_{33}-\gamma_{i} \\
\Delta_{41} & \Delta_{44}-\gamma_{i} & \Delta_{43}
\end{array}\right| \\
\left|\begin{array}{ccc}
\Delta_{21} & \Delta_{22}-\gamma_{i} & \Delta_{24} \\
\Delta_{31} & \Delta_{32} & \Delta_{34} \\
\Delta_{41} & \Delta_{42} & \Delta_{44}-\gamma_{i}
\end{array}\right| \\
\left|\begin{array}{ccc}
\Delta_{21} & \Delta_{22}-\gamma_{i} & \Delta_{23} \\
\Delta_{31} & \Delta_{32} & \Delta_{33}-\gamma_{i} \\
\Delta_{41} & \Delta_{42} & \Delta_{43}
\end{array}\right|
\end{array}\right) . \Delta_{21} \begin{array}{ccc}
\Delta_{12} & \Delta_{13} \\
\Delta_{31} & \Delta_{22}-\gamma_{i} & \Delta_{23}
\end{array}\right) \text { MERGEFORMAT }
$$

From the eigenvectors obtained from eqn. \backslash^{*} MERGEFORMAT (9), new vectors $\boldsymbol{\Psi}_{i}$ can be formed by linear combination,

$$
\Psi_{i}=\Psi_{1,2,3, i}+\Psi_{2,3,4, i}, \quad i=+I,-I,+I I,-I I, \quad \quad \mid * \text { MERGEFORMAT }(10)
$$

and a matrix \mathbf{D}_{Ψ} can be determined, according to

$$
\mathbf{D}_{\boldsymbol{\Psi}}=\left(\begin{array}{llll}
\Psi_{+l, l} & \Psi_{-I, I} & \Psi_{+I I, l} & \Psi_{-I I, I} \tag{11}\\
\Psi_{+I, 2} & \Psi_{-I, 2} & \Psi_{+I I, 2} & \Psi_{-I I, 2} \\
\Psi_{+I, 3} & \Psi_{-I, 3} & \Psi_{+I I, 3} & \Psi_{-I I, 3} \\
\Psi_{+l, 4} & \Psi_{-I, 4} & \Psi_{+I I, 4} & \Psi_{-I I, 4}
\end{array}\right)
$$

This matrix is called the dynamical matrix. Since backward traveling waves do not exist in the semiinfinite medium $N+1$, $\mathbf{D}_{\Psi}(N+1)$ simplifies to

$$
\mathbf{D}_{\boldsymbol{\Psi}}(N+1)=\left(\begin{array}{llll}
\Psi_{+l, l} & 0 & \Psi_{+I I, l} & 0 \tag{12}\\
\Psi_{+l, 2} & 0 & \Psi_{+I I, 2} & 0 \\
\Psi_{+l, 3} & 0 & \Psi_{+I I, 3} & 0 \\
\Psi_{+l, 4} & 0 & \Psi_{+I I, 4} & 0
\end{array}\right)
$$

The four amplitudes A_{i} of the waves within a layered medium n are linked with the amplitudes $A_{i}(n-1)$ of the medium n -1 at the boundary between medium n and $n-1$ by

$$
\left(\begin{array}{l}
A_{1}(n-1) \\
A_{2}(n-1) \\
A_{3}(n-1) \\
A_{4}(n-1)
\end{array}\right)=\mathbf{D}_{\Psi}{ }^{-1}(n-1) \mathbf{D}_{\Psi}(n) \mathbf{P}(n)\left(\begin{array}{c}
A_{1}(n) \\
A_{2}(n) \\
A_{3}(n) \\
A_{4}(n)
\end{array}\right)
$$

।* MERGEFORMAT (13)

The diagonal matrices $\mathbf{P}(n)$ are usually called propagation matrices and are given by

$$
\mathbf{P}(n)=\left(\begin{array}{cccc}
\exp \left(i k_{0} d_{n} \gamma_{+1}\right) & 0 & 0 & 0 \\
0 & \exp \left(i k_{0} d_{n} \gamma_{-1}\right) & 0 & 0 \\
0 & 0 & \exp \left(i k_{0} d_{n} \gamma_{+11}\right) & 0 \\
0 & 0 & 0 & \exp \left(i k_{0} d_{n} \gamma_{-11}\right)
\end{array}\right),{ }^{\prime} \text { MERGEFORMAT (14) }
$$

where d_{n} represents the layer thickness. By introducing the transfer matrix $\mathbf{T}_{\mathbf{p}}$, the amplitudes of the incident waves and the reflected waves at the interface medium $0 /$ medium 1 can be linked with the amplitudes of the transmitted waves in the exit medium $(N+1)$ by the equation

$$
\left(\begin{array}{l}
A_{s} \\
B_{s} \\
A_{p} \\
B_{p}
\end{array}\right)=\mathbf{D}_{\boldsymbol{\Psi}}{ }^{-1}(0) \prod_{n=1}^{N} \mathbf{T}_{\mathbf{p}}(n) \mathbf{D}_{\Psi}(N+1)\left(\begin{array}{c}
C_{s} \\
0 \\
C_{p} \\
0
\end{array}\right)
$$

* MERGEFORMAT (15)

Here, the transfer matrix of the nth layer can be calculated by $\mathbf{T}_{\mathbf{p}}(n)=\mathbf{D}_{\boldsymbol{\Psi}}(n) \mathbf{P}(n) \mathbf{D}_{\Psi}{ }^{-1}(n)$ and the transfer matrices in the product are ordered according to their Z-coordinates. A_{s} and A_{p} represent the amplitudes of the incident waves with s and p-polarization, and the B_{i} and C_{i} are the amplitudes of the reflected and the transmitted waves, respectively.

Finally, we define a matrix \mathbf{M} by the relation

$$
\begin{gathered}
\mathbf{M}=\mathbf{D}_{\Psi}{ }^{-1}(0) \prod_{n=1}^{N} \mathbf{T}_{\mathbf{p}}(n) \mathbf{D}_{\Psi}(N+1) . \\
\left(\begin{array}{c}
A_{s} \\
B_{s} \\
A_{p} \\
B_{p}
\end{array}\right)=\left(\begin{array}{cccc}
M_{11} & M_{12} & M_{13} & M_{14} \\
M_{21} & M_{22} & M_{23} & M_{24} \\
M_{31} & M_{32} & M_{33} & M_{34} \\
M_{41}^{O} & M_{42}^{O} & M_{43}^{O} & M_{44}
\end{array}\right)\left(\begin{array}{c}
C_{s} \\
0 \\
C_{p} \\
0
\end{array}\right) .
\end{gathered}
$$

।* MERGEFORMAT (16)

।* MERGEFORMAT (17)

The reflection and transmission coefficients $r_{s s}$ and $t_{p s}$, e.g., can then be calculated as follows:

$$
\begin{aligned}
& r_{s s}=\left(\frac{B_{s}}{A_{s}}\right)_{A_{p}=0}=\frac{M_{21} M_{33}-M_{23} M_{31}^{0}}{M_{11}^{0} M_{33}^{0}-M_{13}^{0} M_{31}^{0}} \\
& t_{p s}=\left(\frac{C_{s}}{A_{p}}\right)_{A_{s}=0}=\frac{-M_{13}^{0}}{M_{11}^{0} M_{33}^{0}-M_{13}^{0} M_{31}^{0}}
\end{aligned}
$$

* MERGEFORMAT (18)

The first subscript of the coefficients denotes the polarization of the incident wave and the second the orientation of the analyzer, respectively. The corresponding reflectances $R_{i j}$, where $i, j=s, p$, are obtained by:

$$
\begin{equation*}
R_{i j}=\left|r_{i j}\right|^{2} . \tag{19}
\end{equation*}
$$

For the system vacuum $/ \mathrm{C}=\mathrm{O}$ layer/substrate, the dynamical matrices of the scalar media are:

$$
\begin{aligned}
& \mathbf{D}(\text { vacuum })=\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
\cos \alpha & \cos \alpha & 0 & 0 \\
0 & 0 & \cos \alpha & \cos \alpha \\
0 & 0 & -1 & 1
\end{array}\right) . \\
& \mathbf{D}(\text { Subs })=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
n_{\text {Subs }} \cos \beta_{\text {Subs }} & 0 & 0 & 0 \\
0 & 0 & \cos \beta_{\text {Subs }} & 0 \\
0 & 0 & -n_{\text {Subs }} & 0
\end{array}\right) .
\end{aligned}
$$

Where $\cos \beta_{\text {Subs }}$ is obtained by using Snell's law:

$$
\begin{equation*}
\cos \beta_{\text {Subs }}=\sqrt{1-\left[\left(1 / n_{\text {Subs }}\right) \sin \alpha\right]^{2}} \tag{22}
\end{equation*}
$$

As long as the layered medium is uniaxial and oriented with its unique axis along Z , the delta matrix of this medium is given by:

$$
\Delta=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-\sin ^{2} \alpha+\varepsilon_{X X} & 0 & 0 & 0 \\
0 & 0 & 0 & 1-\frac{\sin ^{2} \alpha}{\varepsilon_{Z Z}} \\
0 & 0 & \varepsilon_{Y Y} & 0
\end{array}\right),
$$

The corresponding dynamical matrix is then determined as:

$$
\mathbf{D}(\operatorname{Subs})=\left(\begin{array}{cccc}
\frac{1}{\sqrt{\sin ^{2} \alpha+\varepsilon_{X X}}} & -\frac{1}{\sqrt{\sin ^{2} \alpha+\varepsilon_{X X}}} & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & -\sqrt{\frac{1-\frac{\sin ^{2} \alpha}{\varepsilon_{Z Z}}}{\varepsilon_{Y Y}}} & \sqrt{\frac{1-\frac{\sin ^{2} \alpha}{\varepsilon_{Z Z}}}{\varepsilon_{Y Y}}} \\
0 & 0 & 1 & 1
\end{array}\right) .1 \text { * MERGEFORMAT (24) }
$$

In this case, the 4×4 matrices can be separated into two 2×2 matrices and further simplifications are possible. The reflection coefficient for s- and p-polarized light are then given by:[3]

$$
\begin{align*}
& r_{s}=\frac{r_{12, s}+r_{23, s} \exp (2 i \phi)}{1+r_{12, s} r_{23, s} \exp (2 i \phi)} \\
& r_{12, s}=\frac{k_{1}^{\prime}-k_{2}^{\prime}}{k_{1}^{\prime}+k_{2}^{\prime}}, r_{23, s}=\frac{k_{2}^{\prime}-k_{3}^{\prime}}{k_{2}^{\prime}+k_{3}^{\prime}} \\
& k_{1}^{\prime}=\cos \alpha \tag{25}\\
& k_{i}^{\prime}(V /)=n_{i}^{\prime}(V /) \cos \beta_{i}=\sqrt{n_{i}^{\prime}(V)^{2}-\sin ^{2} \alpha} \quad i=2,3 \\
& n_{2}^{\prime}(\mathrm{O})=\sqrt{\varepsilon_{X X}} \\
& \phi(V)=2 \pi V / k_{2}^{\prime}(V) / d
\end{align*}
$$

$$
\begin{aligned}
& r_{p}=\frac{r_{12, p}+r_{23, p} \exp (2 i \phi)}{1+r_{12, p} r_{23, p} \exp (2 i \phi)} \\
& r_{12, p}=\frac{n_{1}^{\prime 2} k_{2}^{\prime}-\sqrt{\varepsilon_{Y Y} \varepsilon_{Z Z}} k_{1}^{\prime}}{n_{1}^{\prime 2} k_{2}^{\prime}+\sqrt{\varepsilon_{Y Y} \varepsilon_{Z Z}} k_{1}^{\prime}} r_{23, p}=\frac{\sqrt{\varepsilon_{Y \gamma} \varepsilon_{Z Z}} k_{3}^{\prime}-n_{3}^{\prime 2} k_{2}^{\prime}}{\sqrt{\varepsilon_{Y Y} \varepsilon_{Z z}} k_{3}^{\prime}+n_{3}^{\prime 2} k_{2}^{\prime}} \\
& k_{1}^{\prime}=n_{1}^{\prime} \cos \alpha \\
& \text {. }{ }^{*} \text { MERGEFORMAT (26) } \\
& k_{i}^{\prime}(\mathrm{O})=n_{i}^{\prime}(\mathrm{O}) \cos \beta_{i}=\sqrt{n_{i}^{\prime}(\mathrm{O})^{2}-\sin ^{2} \alpha} \quad i=2,3 \\
& n_{2}^{\prime}(\mathrm{V})=\sqrt{\varepsilon_{z Z}} \\
& \phi(\mathrm{~V})=2 \pi \% \sqrt{\frac{\varepsilon_{Y Y}}{\varepsilon_{Z Z}}} k_{2}^{\prime}(\mathrm{V}) d
\end{aligned}
$$

If we set $\varepsilon_{Z Z}=\varepsilon_{b, \|}$ and $\varepsilon_{Y Y}=\varepsilon_{b, \perp}$, eqn. (0.1) is obtained.

References:

[1] T. G. Mayerhöfer and J. Popp, Journal of Optics A: Pure and Applied Optics 8, 657 (2006).
[2] T. G. Mayerhofer, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy 61, 2611 (2005).
[3] O. E. Piro, Physical Review B 36, 3427 (1987).

