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ARRHENIUS FITS, [A (Tn) exp(-Ea/RT)] TO VRC-TST PREDICTIONS FOR THE CAPTURE RATE CONSTANTS 
FOR THE RADICAL-RADICAL REACTIONS STUDIED IN THIS WORK VALID BETWEEN 300-2000 K.

Units: cal, mol. s, K

1. CH3 + iso-propyl = iso-butane 3.411E+14 -0.523 -410 ! Fit to within 2% 

2. C2H5 + iso-propyl = iso-pentane 1.885E+15 -0.871 -356 ! Fit to within 2%

 

3. CH3 + sec-Butyl = iso-pentane 1.612E+14 -0.457 -587 ! Fit to within 5% 

4. CH3 + i-Butyl = iso-pentane 2.020E+14 -0.394 -411 ! Fit to within 2%

5. C2H5 + n-Butyl = n-Hexane 6.660E+14 -0.621 -447 ! Fit to within 5%

6. n-propyl + n-propyl = n-Hexane 5.253E+14 -0.713 -458 ! Fit to within 3%

7. iso-butyl + iso-butyl = 2,5-dimethylhexane 3.561E+15 -1.032 -354 ! Fit to within 8%

8. sec-butyl + sec-butyl = 3,4-dimethylhexane 1.346E+15 -1.12 -684 !Fit to within 10%

Fit to Geometric Mean Rule (GMR) based rate constants for n-butyl + n-butyl derived from VRC-TST 
predictions for n-Butyl + C2H5 (Reaction 5, present work) and C2H5 + C2H5 (Ref. 27)

9. n-butyl+n-butyl = n-octane 3.872E+15 -1.0  -315 !Fit to within 8%

ANALYSIS OF THE DISPROPORTIONATION REACTION IN ISO-BUTYL 

Gibian and Corley1 review the available literature data on the self-reactions of iso-butyl radicals. They 
conclude that the earlier results from Kraus and Calvert2 and Metcalfe and Trotman-Dickenson3 that used 
di-isobutylketone and isovaleraldehyde respectively as photolysis sources of iso-butyl radicals were 
influenced by secondary reactions. In particular, increasing yields of iso-butene in these experiments were 
attributed to facile bimolecular reactions of radicals with the precursor photolyte and as a consequence of 
this ratios of isobutene/2,5-dimethylhexane could not be solely attributed to the ratio of 
disproportionation/recombination in the self-reactions of iso-butyl radicals. Terry and Futrell4 and Slater et 
al.5 used a relatively “cleaner” photolysis source, 1,1’-azoisobutane, to generate iso-butyl radicals and 
measured the yields of isobutene relative to the recombination product, 2, 5-dimethylhexane to obtain 
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disproportionation/recombination ratios. The studies by Terry and Futrell were performed at room-
temperature. On the other hand, the Slater et al. studies span the T-range 296-598 K, but 
disproportionation/recombination ratios were measured exclusively in 13 experiments over the 368-441 K 
T-range (see Table 15). An additional 14 experiments over the 350-423 K also measured these ratios but 
the temperatures at which these ratios were measured are not provided and hence were not used in the 
present fit. We have chosen the 298 K ratio from Terry and Futrell, the 368-441 K ratios from Slater et al., 
and the 800 K ratio from the present work with the VRC-TST capture rate prediction (equation 7 above) to 
obtain disproportionation rate constants. These rate constants are plotted in Fig S1 below. These rate 
constants are then best-fit to an Arrhenius expression represented by,

10. iso-butyl + iso-butyl = iso-butene + iso-butane 2.168E+02   3.1   -2762 ! 300-800 K

The observed T-dependence for this disproportionation reaction is in remarkable agreement with the T-
dependence predicted in the theoretical calculations by Wu et al.6 for the disproportionation reaction CH3 
+ C2H5 → CH4 + C2H4. Interestingly, if the disproportionation/recombination lower temperature ratios were 
assumed to be constant as concluded by Gibian and Corley and applicable over the present experimental T-
Range, that would have resulted in a factor of 4 drop in the disproportionation rate constants from room-T 
to 800 K.

Fig S1: Arrhenius plot for the disproportionation reaction of iso-butyl radicals.
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