Journal Name

ARTICLE TYPE

Cite this: DOI: 00.0000/xxxxxxxxx

Supporiting Information: The role of hydrogen bond donor and water content on the electrochemical reduction of Ni^{2+} from Deep Eutectic Solvents - an experimental and modelling study

Monika Lukaczynska-Anderson,^{$a\ddagger$} Mesfin Haile Mamme,^{ab} Andrea Ceglia,^c Krista Van den Bergh,^d Joost De Strycker,^d Frank De Proft,^b Herman Terryn,^a and Jon Ustarroz^{$ae\ddagger$}

2

2

1

1

2

List of Figures

- S1 The relative percentual change (to the dry DES) of the (a) viscosity and (b) conductivity for 1ChCl:2U and 1ChCl:2EG containing 0.2 M NiCl₂ and different water contents at 60 °C.
- S2 Optimized structures of (a) modelled box containing DES and (b) DES constituents at 60 °C.
- S3 CA measurements in (a) 1ChCl:2U and (b) 1ChCl:2EG containing 0.2 M NiCl₂ and x *wt*% H₂O at 60 °C for 300 s on steel. Inset: t_{ind} in function of water content.
 33

List of Tables

- S1 Water content measured before and after electrochemical experiments at 60 °C in 1ChCl:2U and 1ChCl:2EG containig 0.2 M NiCl₂ and different water concentrations
- S2 Viscosity and conductivity at 60°C of 1ChCl:2U and 1ChCl:2EG containing 0.2 M NiCl₂ and different water contents
- S3 Modelled coordination numbers of Ni²⁺ lingands at 60 °C in 1ChCl:2U and 1ChCl:2EG containing 0.2 M of NiCl₂ and different H₂O content.
 S4 Interaction energy between HBD, H₂O and Ni²⁺
- obtained for 1ChCl:2U and 1ChCl:2EG containing0.1 wt% and 2.1 wt% at 60 °C2

1 Physico-chemical properties of Dep Eutectic Solvents

Table S1	Water content measured before and after electrochemical ex-
periments	; at 60 $^\circ\text{C}$ in 1ChCl:2U and 1ChCl:2EG containig 0.2 M NiCl_2
and differ	ent water concentrations

[wt%]		[vol%]		[mol%)]	[mol/	<i>l</i>]
	1	lChCl:2U	+ 0.2M N	$\text{NiCl}_2 + 1$	x wt% H ₂ O		
0.1(GB)	± 0.1	0.1	± 0.1	0.4	± 0.2	0.1	± 0.1
1.2(blank)	± 0.2	1.4	± 0.2	5.2	± 0.9	0.7	± 0.1
2.1	± 0.1	2.5	± 0.1	9.1	± 0.3	1.3	± 0.2
4.5	± 0.1	5.3	± 0.1	19.4	± 0.5	2.9	± 0.1
7.5	± 0.1	8.8	± 0.1	26.3	± 0.4	4.8	± 0.1
9.7	± 0.2	11.7	± 0.2	33.8	± 0.8	6.5	± 0.2
18.7	± 0.3	22.5	± 0.3	55.3	± 0.7	11.3	± 0.2
	1	ChCl:2EC	G + 0.2M	NiCl ₂ +	$x wt\% H_2O$		
0.1(GB)	± 0.1	0.1	± 0.1	0.6	± 0.5	0.1	± 0.1
0.8(blank)	± 0.1	0.9	± 0.1	3.8	± 0.3	0.5	± 0.1
2.8	± 0.5	3.1	± 0.6	13.3	± 1.9	1.7	± 0.3
5.3	± 0.2	5.7	± 0.2	22.1	± 0.6	3.4	± 0.1
7.3	± 0.3	7.8	± 0.3	26.5	± 0.9	4.6	± 0.2
10.2	± 0.3	10.8	± 0.3	38.4	± 1.0	6.0	± 0.2
20.2	± 0.4	21.4	± 0.5	59.2	± 1.3	11.9	± 0.3

Table S2 Viscosity and conductivity at 60° C of 1ChCl:2U and 1ChCl:2EG containing 0.2 M NiCl₂ and different water contents

H ₂ O [<i>wt</i> %]		η [Pa·s]		σ [mS/cm]	
	1ChC	Cl:2U + 0.2	$M \operatorname{NiCl}_2 + x v$	<i>vt%</i> H ₂ O	
0.1(GB)	± 0.1	-	-	2.42	± 0.17
2.1	± 0.1	0.085	± 0.001	5.32	± 0.12
4.5	± 0.1	0.064	± 0.001	11.39	± 0.28
7.5	± 0.1	0.038	± 0.001	19.40	± 0.33
9.7	± 0.2	0.022	± 0.001	34.80	± 0.52
18.7	± 0.3	0.011	± 0.001	73.28	± 0.35
	1ChC	l:2EG + 0.2	$M NiCl_2 + x$	wt% H ₂ O	
0.1(GB)	± 0.1	-	-	21.91	±0.23
2.8	± 0.5	0.018	± 0.001	24.48	± 0.37
5.3	± 0.2	0.016	± 0.001	29.76	± 0.52
7.3	± 0.3	0.014	± 0.001	35.28	± 0.34
10.2	± 0.3	0.012	± 0.001	42.63	± 0.67
20.2	± 0.4	0.009	± 0.001	66.11	±0.29

^a Vrije Universiteit Brussel, Research Group Electrochemical and Surface Engineering (SURF), Pleinlaan 2, 1050 Brussels, Belgium.

^b Vrije Universiteit Brussel, Eenheid Algemene Chemie (ALGC), Pleinlaan 2, 1050 Brussels, Belgium.

^c Vrije Universiteit Brussel, Brussels Photonic Team (B-PHOT), Pleinlaan 2, 1050 Brussels, Belgium.

^d OCAS n.v., President John F. Kennedylaan 3, 9060 Zelzate, Belgium.

^e Université Libre de Bruxelles, Chemistry of Surfaces, Interfaces and Nanomaterials (ChemSIN), Boulevard du Triomphe 2, 1050 Brussels, Belgium.

[‡] Corresponding author. Vrije Universiteit Brussel, Research Group Electrochemical and Surface Engineering (SURF), Pleinlaan 2, 1050 Brussels, Belgium. E-mail address: monika.lukaczynska@vub.be

[‡] Corresponding author. Université Libre de Bruxelles, Chemistry of Surfaces, Interfaces and Nanomaterials (ChemSIN), Boulevard du Triomphe 2, 1050 Brussels, Belgium. E-mail: jon.ustarroz@ulb.be

Fig. S1 The relative percentual change (to the dry DES) of the (a) viscosity and (b) conductivity for 1ChCl:2U and 1ChCl:2EG containing 0.2 M NiCl₂ and different water contents at 60 $^{\circ}$ C.

2 Molecular Dynamics modelling

Fig. S2 Optimized structures of (a) modelled box containing DES and (b) DES constituents at 60 $^\circ C.$

Table S3 Modelled coordination numbers of Ni $^{2+}$ lingands at 60 $^\circ C$ in 1ChCl:2U and 1ChCl:2EG containing 0.2 M of NiCl_2 and different H_2O content.

		1ChCl:	2U + 0.	2 M NiC	$l_2 + x w$	t% H ₂ O		
x	0.0	0.1	2.1	4.5	7.5	10	20	100
Cl ⁻	2.8	2.8	2.4	2.5	2.6	2.5	2.2	0.4
Ch^+	0.5	-	-	-	-	-	-	-
U	2.5	2.7	1.3	0.6	0.4	-	-	-
H_2O	-	0.2	1.8	3.1	3.4	4.3	5.0	5.6
Σ CN	5.8	5.7	5.4	6.2	6.4	6.8	7.2	6.0
1ChCl:2EG + 0.2 M NiCl ₂ + x wt% H ₂ O								
x	0.0	0.1	2.1	5.3	7.3	10	20	100
Cl-	3.3	3.2	3.0	2.9	2.8	2.7	2.2	0.4
Ch^+	-	-	-	-	-	-	-	-
EG	1.4	1.4	0.1	-	-	-	-	-
H_2O	-	0.4	2.8	3.2	3.7	3.8	5.8	5.6
Σ CN	4.7	5.0	5.9	6.1	6.5	6.5	8.0	6.0

Table S4 Interaction energy between HBD, H_2O and Ni^{2+} obtained for 1ChCl:2U and 1ChCl:2EG containing 0.1 $\mathit{wt\%}$ and 2.1 $\mathit{wt\%}$ at 60 $^\circ\text{C}$

x	E _{int0.1wt%H2O} [kJ/mo	I] $E_{int2.1wt\%H_2O}$ [kJ/mol]
	1ChCl:2U + 0.2 M Ni	$Cl_2 + x wt\% H_2O$
Ni ²⁺ -U	-3077.7	-3618.8
Ni ²⁺ -H ₂ O	-271.8	-1961.5
	1ChCl:2EG + 0.2 M N	$iCl_2 + x wt\% H_2O$
Ni ²⁺ -EG	-1562.3	-606.6
Ni ²⁺ -H ₂ O	-291.1	-1861.6

3 Ni^{2+} electroreduction in DESs

Due to a difference in the Ni²⁺ reduction potentials in both 1ChCl:2U and 1ChCl:2EG ($\sim 100mV$), and in order to avoid incorporation of DES decomposition by-products, potentials of E = -0.70V for 1ChCl:2U and E = -0.60V for 1ChCl:2EG were selected to guarantee a similar potential difference in respect to the onset potential of the mixtures.

Figure S3 shows CAs for different water contents in 1ChCl:2U (a) and 1ChCl:2EG (b). All CAs can be divided into three characteristic regions ¹. Right upon application of potential, the absolute current density initially decreases and remains low (but not zero) for a certain t_{ind} , which spans from less than 1 s to more than 100 s for the slowest depositions. During this time, metal atoms are adsorbed on the surface and may aggregate in form of nanoclusters, but do not contribute to increase the active surface area. Only after a certain t_{ind} , the negative current increases due to 3-dimensional (3D) growth by direct attachment of the stable clusters^{2,3}. Finally, the current reaches a maximum which is related to diffusional coupling.

As it can be seen from Figure 3(a), for 1ChCl:2U, when the H₂O concentration decreases to 2.1 *wt*%, t_{*ind*} increases (red, blue and black curves). However, when the water content drops to the minimum (0.1 *wt*%) under glovebox conditions (green curve), t_{*ind*} decreases, reflecting that Ni²⁺ reduction is facilitated in the driest DES, and that a small amount of H₂O inhibits the formation of growing Ni nuclei. In the case of 1ChCl:2EG, the variation of t_{*ind*} with water content is much smaller than for 1ChCl:2U. Surprisingly, Figure 3(b) shows that t_{*ind*} of the driest DES (0.1 *wt*%)

Fig. S3 CA measurements in (a) 1ChCl:2U and (b) 1ChCl:2EG containing 0.2 M NiCl₂ and x wt% H₂O at 60 $^\circ$ C for 300 s on steel. Inset: t_{ind} in function of water content.

of H_2O) is not only shorter than this of 2.8 *wt*% H_2O , but is the shortest of all the 1ChCl:2EG DESs with up to 7.3 *wt*% of H_2O .

Notes and references

- 1 P. Sebastian, M. I. Giannotti, E. Gomez and J. M. Feliu, ACS Appl. Energy Mater., 2018, 1, 1016–1028.
- 2 J. Ustarroz, X. Ke, A. Hubin, S. Bals and H. Terryn, J. Phys. Chem. C, 2012, 116, 2322–2329.
- 3 J. Ustarroz, J. A. Hammons, T. Altantzis, A. Hubin, S. Bals and H. Terryn, J. Am. Chem. Soc., 2013, **135**, 11550–11561.