Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2020

Electronic Supplementary Information

Ab initio investigation of the ground and excited states of $RuO^{+,0,-}$ and their reaction with water

Isuru R. Ariyarathna, Nuno M. S. Almeida, and Evangelos Miliordos*

Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA

* To whom correspondence should be addressed. E-mail: <u>emiliord@auburn.edu</u>

State	Coef.	2σ	3σ	4σ	$1\pi_x$	$2\pi_x$	$1\pi_y$	$2\pi_y$	$1\delta_x^2 - y^2$	1δ _{xy}
$X^2\Pi$	0.89	2	0	0	2	α	2	0	2	2
$1^4\Delta$	0.95	2	0	0	2	α	2	α	2	α
$1^6 \Sigma^+$	0.94	2	α	0	2	α	2	α	α	α
$1^4 \Phi$	0.66	2	α	0	2	0	2	α	2	α
	-0.66	2	α	0	2	α	2	0	α	2
$1^{4}\Pi$	0.66	2	α	0	2	0	2	α	2	α
	0.66	2	α	0	2	α	2	0	α	2
$1^2\Sigma^+$	0.89	2	α	0	2	0	2	0	2	2
$1^{2}\Gamma$	0.47	2	0	0	2	0	2	2	2	α
	-0.47	2	0	0	2	2	2	0	2	α
	0.47	2	0	0	2	β	2	α	α	2
	-0.47	2	0	0	2	α	2	β	α	2
$1^2\Delta$	0.67	2	0	0	2	α	2	α	2	β
	-0.34	2	0	0	2	β	2	α	2	α
	-0.34	2	0	0	2	α	2	β	2	α
	0.31	2	0	0	2	0	2	2	α	2
	0.31	2	0	0	2	2	2	0	α	2
$1^2\Sigma^-$	-0.46	2	0	0	2	0	2	2	2	α
	0.46	2	0	0	2	2	2	0	2	α
	0.46	2	0	0	2	β	2	α	α	2
	-0.46	2	0	0	2	α	2	β	α	2
$1^2\Sigma^+$	-0.46	2	0	0	2	β	2	α	2	α
	0.46	2	0	0	2	α	2	β	2	α
	-0.46	2	0	0	2	0	2	2	α	2
	0.46	2	0	0	2	2	2	0	α	2
$1^2\Phi$	-0.54	2	α	0	2	β	2	0	α	2
	0.54	2	α	0	2	0	2	β	2	α
	-0.31	2	β	0	2	0	2	α	2	α
	0.31	2	β	0	2	α	2	0	α	2
$2^{2}\Pi$	0.49	2	α	0	2	β	2	0	α	2
	0.49	2	α	0	2	0	2	β	2	α
	-0.42	2	β	0	2	0	2	α	2	α
. 4	-0.42	2	β	0	2	α	2	0	α	2
$1^{4}\Sigma^{+}$	0.49	2	α	0	2	α	2	β	α	α
2	0.49	2	α	0	2	β	2	α	α	α
$2^2\Delta$	0.51	2	2	0	2	0	2	0	2	α
	-0.45	2	0	0	2	0	2	2	2	α
- 1 ·	-0.45	2	0	0	2	2	2	0	2	α
$2^{4}\Delta$	0.64	2	α	0	2	0	2	2	α	α
. (-0.64	2	α	0	2	2	2	0	α	α
1°Φ	0.68	2	α	0	α	α	2	α	2	α
	-0.68	2	α	0	2	α	α	α	α	2

Table S1. Dominant electronic configurations for the lowest electronic states of RuO⁺. $1\sigma^2$ (~2so) is implied for all states, and MOs are shown in Figure 2.

$^{4}\Delta_{7/2}$ -168.861421750.00 $^{4}\Delta_{5/2}$ -168.859229580.06 $^{2}\Pi_{1/2}$ -168.858162540.09 $^{4}\Delta_{3/2}$ -168.857351550.11 $^{2}\Pi_{3/2}$ -168.851385660.27 $^{4}\Delta_{1/2}$ -168.851264860.28 $^{4}\Pi_{5/2}$ -168.850172630.31 $^{4}\Pi_{3/2}$ -168.846414950.41 $^{4}\Phi_{9/2}$ -168.846347680.41 $^{4}\Phi_{7/2}$ -168.844503140.46 $^{4}\Pi_{1/2}$ -168.842744720.51 $^{4}\Phi_{3/2}$ -168.841086670.55 $^{4}\Pi_{1/2}$ -168.840020430.58 $^{6}\Sigma^{+}_{3/2}$ -168.838587450.62	nce	Energy difference (eV)	Energy (Hartrees)	State
${}^{4}\Delta_{5/2}$ -168.859229580.06 ${}^{2}\Pi_{1/2}$ -168.858162540.09 ${}^{4}\Delta_{3/2}$ -168.857351550.11 ${}^{2}\Pi_{3/2}$ -168.851385660.27 ${}^{4}\Delta_{1/2}$ -168.851264860.28 ${}^{4}\Pi_{5/2}$ -168.850172630.31 ${}^{4}\Pi_{3/2}$ -168.846414950.41 ${}^{4}\Phi_{9/2}$ -168.846347680.41 ${}^{4}\Phi_{7/2}$ -168.844503140.46 ${}^{4}\Pi_{1/2}$ -168.842744720.51 ${}^{4}\Phi_{3/2}$ -168.841086670.55 ${}^{4}\Pi_{1/2}$ -168.840020430.58 ${}^{6}\Sigma^{+}_{3/2}$ -168.838587450.62		0.00	-168.86142175	$^{4}\Delta$ 7/2
$^2 Π_{1/2}$ -168.858162540.09 $^4 Δ_{3/2}$ -168.857351550.11 $^2 Π_{3/2}$ -168.851385660.27 $^4 Δ_{1/2}$ -168.851264860.28 $^4 Π_{5/2}$ -168.850172630.31 $^4 Π_{3/2}$ -168.846414950.41 $^4 Φ_{9/2}$ -168.846347680.41 $^4 Φ_{7/2}$ -168.844503140.46 $^4 Π_{1/2}$ -168.843522230.49 $^4 Φ_{5/2}$ -168.841086670.55 $^4 Π_{1/2}$ -168.840020430.58 $^6 Σ^+_{3/2}$ -168.838587450.62		0.06	-168.85922958	$^4\Delta$ 5/2
$^{4}\Delta_{3/2}$ -168.857351550.11 $^{2}\Pi_{3/2}$ -168.851385660.27 $^{4}\Delta_{1/2}$ -168.851264860.28 $^{4}\Pi_{5/2}$ -168.850172630.31 $^{4}\Pi_{3/2}$ -168.846414950.41 $^{4}\Phi_{9/2}$ -168.846347680.41 $^{4}\Phi_{7/2}$ -168.844503140.46 $^{4}\Pi_{1/2}$ -168.843522230.49 $^{4}\Phi_{5/2}$ -168.842744720.51 $^{4}\Phi_{3/2}$ -168.841086670.55 $^{4}\Pi_{1/2}$ -168.840020430.58 $^{6}\Sigma^{+}_{3/2}$ -168.838587450.62		0.09	-168.85816254	$^{2}\Pi_{1/2}$
$^{2}\Pi_{3/2}$ -168.851385660.27 $^{4}\Delta_{1/2}$ -168.851264860.28 $^{4}\Pi_{5/2}$ -168.850172630.31 $^{4}\Pi_{3/2}$ -168.846414950.41 $^{4}\Phi_{9/2}$ -168.846347680.41 $^{4}\Phi_{7/2}$ -168.844503140.46 $^{4}\Pi_{1/2}$ -168.843522230.49 $^{4}\Phi_{5/2}$ -168.842744720.51 $^{4}\Phi_{3/2}$ -168.841086670.55 $^{4}\Pi_{1/2}$ -168.840020430.58 $^{6}\Sigma^{+}_{3/2}$ -168.838587450.62		0.11	-168.85735155	$^{4}\Delta_{3/2}$
$^{4}\Delta_{1/2}$ -168.851264860.28 $^{4}\Pi_{5/2}$ -168.850172630.31 $^{4}\Pi_{3/2}$ -168.846414950.41 $^{4}\Phi_{9/2}$ -168.846347680.41 $^{4}\Phi_{7/2}$ -168.844503140.46 $^{4}\Pi_{1/2}$ -168.843522230.49 $^{4}\Phi_{5/2}$ -168.842744720.51 $^{4}\Phi_{3/2}$ -168.841086670.55 $^{4}\Pi_{1/2}$ -168.840020430.58 $^{6}\Sigma^{+}_{3/2}$ -168.838587450.62		0.27	-168.85138566	² П _{3/2}
$^{4}\Pi_{5/2}$ -168.850172630.31 $^{4}\Pi_{3/2}$ -168.846414950.41 $^{4}\Phi_{9/2}$ -168.846347680.41 $^{4}\Phi_{7/2}$ -168.846347680.41 $^{4}\Phi_{7/2}$ -168.844503140.46 $^{4}\Pi_{1/2}$ -168.843522230.49 $^{4}\Phi_{5/2}$ -168.842744720.51 $^{4}\Phi_{3/2}$ -168.841086670.55 $^{4}\Pi_{1/2}$ -168.840020430.58 $^{6}\Sigma^{+}_{3/2}$ -168.838587450.62		0.28	-168.85126486	$^{4}\Delta_{1/2}$
$^{4}\Pi_{3/2}$ -168.846414950.41 $^{4}Φ_{9/2}$ -168.846347680.41 $^{4}Φ_{7/2}$ -168.844503140.46 $^{4}\Pi_{1/2}$ -168.843522230.49 $^{4}Φ_{5/2}$ -168.842744720.51 $^{4}Φ_{3/2}$ -168.841086670.55 $^{4}\Pi_{1/2}$ -168.840020430.58 $^{6}\Sigma^{+}_{3/2}$ -168.838587450.62		0.31	-168.85017263	⁴ Π5/2
$^{4}Φ_{9/2}$ -168.846347680.41 $^{4}Φ_{7/2}$ -168.844503140.46 $^{4}Π_{1/2}$ -168.843522230.49 $^{4}Φ_{5/2}$ -168.842744720.51 $^{4}Φ_{3/2}$ -168.841086670.55 $^{4}Π_{1/2}$ -168.840020430.58 $^{6}Σ^{+}_{3/2}$ -168.838587450.62		0.41	-168.84641495	⁴ Π _{3/2}
$^{4}Φ_{7/2}$ -168.844503140.46 $^{4}Π_{1/2}$ -168.843522230.49 $^{4}Φ_{5/2}$ -168.842744720.51 $^{4}Φ_{3/2}$ -168.841086670.55 $^{4}Π_{1/2}$ -168.840020430.58 $^{6}Σ^{+}_{3/2}$ -168.838587450.62		0.41	-168.84634768	${}^{4}\Phi_{9/2}$
${}^{4}\Pi_{1/2}$ -168.843522230.49 ${}^{4}\Phi_{5/2}$ -168.842744720.51 ${}^{4}\Phi_{3/2}$ -168.841086670.55 ${}^{4}\Pi_{1/2}$ -168.840020430.58 ${}^{6}\Sigma^{+}_{3/2}$ -168.838587450.62		0.46	-168.84450314	${}^{4}\Phi_{7/2}$
$^{4}Φ_{5/2}$ -168.842744720.51 $^{4}Φ_{3/2}$ -168.841086670.55 $^{4}Π_{1/2}$ -168.840020430.58 $^{6}Σ^{+}_{3/2}$ -168.838587450.62		0.49	-168.84352223	⁴ Π _{1/2}
$^{4}Φ_{3/2}$ -168.841086670.55 $^{4}Π_{1/2}$ -168.840020430.58 $^{6}Σ^{+}_{3/2}$ -168.838587450.62		0.51	-168.84274472	${}^{4}\Phi_{5/2}$
${}^{4}\Pi_{1/2}$ -168.840020430.58 ${}^{6}\Sigma^{+}_{3/2}$ -168.838587450.62		0.55	-168.84108667	${}^{4}\Phi_{3/2}$
$^{6}\Sigma^{+}_{3/2}$ -168.83858745 0.62		0.58	-168.84002043	⁴ Π _{1/2}
		0.62	-168.83858745	$6\Sigma^{+}_{3/2}$
${}^{6}\Sigma^{+}_{5/2}$ -168.83849890 0.62		0.62	-168.83849890	$^{6}\Sigma^{+}_{5/2}$
$^{6}\Sigma^{+}_{1/2}$ -168.83843296 0.63		0.63	-168.83843296	${}^{6}\Sigma^{+}{}_{1/2}$
$^{2}\Sigma^{+}_{1/2}$ -168.82918404 0.88		0.88	-168.82918404	$^{2}\Sigma^{+}_{1/2}$

Table S2. Spin-orbit energies for the lowest electronic states of RuO⁺ at 1.70 Å at MRCI level.

State	Coef.	2σ	3σ	4σ	$1\pi_{\rm x}$	$2\pi_x$	$1\pi_y$	$2\pi_{\rm y}$	$1\delta_{x}^{2}$ -y	$1\delta_{xy}$
$X^{5}\Delta$	0.95	2	α	0	2	α	2	α	2	α
$1^3\Pi$	0.80	2	α	0	2	α	2	0	2	2
$1^{3}\Delta$	0.79	2	β	0	2	α	2	α	2	α
	-0.41	2	α	0	2	β	2	α	2	α
	-0.41	2	α	0	2	α	2	β	2	α
$1^{1}\Sigma^{+}$	0.92	2	2	0	2	0	2	0	2	2
$1^{1}\Pi$	0.60	2	β	0	2	α	2	0	2	2
	-0.60	2	α	0	2	β	2	0	2	2
$1^{3}\Gamma$	0.56	2	α	0	2	α	2	β	2	α
	0.46	2	α	0	2	2	2	0	α	2
	-0.46	2	α	0	2	0	2	2	α	2
$1^{3}\Phi$	0.63	2	2	0	2	α	2	0	α	2
	0.63	2	2	0	2	0	2	α	2	α
$1^5\Sigma^+$	0.93	2	2	0	2	α	2	α	α	α
$1^{3}\Sigma^{-}$	0.50	2	α	0	2	α	2	β	α	2
	-0.43	2	α	0	2	0	2	2	2	α
	0.43	2	α	0	2	2	2	0	2	α
2 ³ ∏	0.52	2	α	0	2	α	2	0	2	2
	0.51	2	2	0	2	0	2	α	2	α
	-0.51	2	2	0	2	α	2	0	α	2
$2^{3}\Sigma^{-}$	0.81	2	0	0	2	α	2	α	2	2
$1^{3}\Sigma^{+}$	-0.32	α	2	0	2	β	2	α	2	α
	0.56	α	2	0	2	α	2	β	2	α
	-0.45	α	α	0	2	0	2	2	2	2
	0.45	α	α	0	2	2	2	0	2	2
$2^{3}\Delta$	0.53	α	α	0	2	0	2	2	2	2
	0.53	α	α	0	2	2	2	0	2	2
$1^{1}\Delta$	0.49	2	α	0	2	β	2	β	α	2
	0.49	2	β	0	2	α	2	α	β	2

Table S3. Dominant electronic configurations for the lowest electronic states of RuO. $1\sigma^2$ (~2so) is implied for all states, and MOs are shown in Figure 2.

State	Energy (Hartrees)	Energy difference
		(eV)
⁵ Δ4	-169.1554527	0.00
$^{5}\Delta_{3}$	-169.1535351	0.05
$^{5}\Delta_{2}$	-169.1518288	0.10
$^{5}\Delta_{1}$	-169.1499812	0.15
$^5\Delta_{0^+}$	-169.1484284	0.19
⁵ Δ0-	-169.1484166	0.19
${}^{3}\Pi_{1}$	-169.1293541	0.71
${}^{3}\Pi_{0^{+}}$	-169.1292645	0.71
³ По-	-169.1288716	0.72
³ Π2	-169.1288646	0.72
$^{3}\Delta$ 3	-169.1216192	0.92
$^{3}\Delta_{2}$	-169.1173184	1.04
$^{3}\Delta_{1}$	-169.1151332	1.10
$^{3}\Gamma_{5}$	-169.1145857	1.11
$^{3}\Gamma_{4}$	-169.1126878	1.16
${}^{3}\Phi_{1}$	-169.1097962	1.24
$^{1}\Pi_{1}$	-169.1094300	1.25
$^{3}\Gamma_{3}$	-169.1090370	1.26
${}^{3}\Sigma^{-}0^{+}$	-169.1069723	1.32
$^{3}\Sigma^{-1}$	-169.1066534	1.33
${}^{3}\Phi_{2}$	-169.1064445	1.33
$^{3}\Phi_{3}$	-169.1056745	1.35
$5\Sigma^{+}2$	-169.1041079	1.40
${}^{5}\Sigma^{+}{}_{1}$	-169.1034939	1.41
$5\Sigma^{+}_{0^{+}}$	-169.1033202	1.42

Table S4. Spin-orbit energies for the lowest electronic states of RuO at 1.70 Å at MRCI level.

Table S5. MRCI optimal geometries (Cartesian coordinates in Å) of the reactants, transition state, and products of the RuO + H₂O \rightarrow Ru(OH)₂ reaction for the first two quintets (1⁵A, 2⁵A), the first four triplet (1³A, 2³A, 3³A, 4³A), and the first singlet (1¹A) states.

			Reactants		Transition State					Products			
15A	Ru	0.1597804677	0.1623007048	0.1582543344	Ru	0.6254154857	0.0047848187	-0.1786618408	Ru	-0.0000000000	-0.0000000000	-0.0079837670	
	0	-1.5320762648	0.2834936180	0.1594956641	0	-0.3663310005	1.5227326523	-0.0900564245	0	-0.0396575603	1.9203263554	-0.0079837670	
	0	2.4443619857	0.0054447139	0.1420322867	0	-1.5545677686	-0.4783223626	0.1980892435	0	0.0396575603	-1.9203263554	-0.0079837670	
	Н	2.9802106979	0.6896882915	0.5287380877	Н	-1.2399163461	0.7152313667	0.1118874754	Н	0.4834729671	2.5003330149	0.5270106791	
	Н	2.8907348248	-0.8199324552	0.2977241337	Н	-1.8745161242	-0.6844991220	1.0676124082	Н	-0.4834729671	-2.5003330149	0.5270106791	
25.4	D	0.0007224607	0 1515772022	0.00075200	D	0 5 4705 (9 (7 4	0.0002401240	0.0500(95721	D	0.0002622044	0.042409/909	0.0008480503	
2°A	Ru	0.080/23460/	0.1515//2955	0.23099/5398	Ku	0.54/95080/4	-0.0882491349	-0.0500685721	Ku	-0.0002655944	0.0424986808	0.0008489595	
	0	-1.6013090692	0.2696490786	0.0533811/26	0	-0.3802035230	1.4554802406	0.0032414/12	0	-1.9181162259	-0.00/4050560	0.0839236871	
	0	2.3344347031	-0.00810093/3	0.46/2936361	0	-1./1088820/1	-0.5/6054121/	-0.0536031028	0	1.91/00/3913	-0.00/5805042	-0.0815292300	
	н	2.8230377033	0.4/50942540	1.1390244724	н	-1.3/434/3209	0.059/051950	0.0148002411	н	-2.5281622582	0.5122782842	-0.4200322790	
	Н	2./881800032	-0.8498234952	0.3/5391/29/	Н	-2.3035066103	-0.8191/81/88	0.6/93419626	Н	2.52/3644864	0.5193/56/14	0.4151688690	
1 ³ A	Ru	0.3028008357	0.1584650854	-0.2512400199	Ru	0.4273108744	-0.1606414752	0.0002646837	Ru	-0.0000000000	-0.0000000000	-0.0061429588	
	0	-1.1873792982	0.2382758057	0.4527066394	О	-0.3760781594	1.4447856828	0.0338348247	0	-0.0478326879	1.9013303154	-0.0061429588	
	0	2.4821281599	0.0067805178	-0.1048069363	О	-1.6644454147	-0.4790217553	-0.1023756819	0	0.0478326879	-1.9013303154	-0.0061429588	
	Н	2.9771815994	0.7407945497	0.2425859822	Н	-1.4623832462	0.6136870580	-0.0323718872	Н	0.5831149289	2.4756954250	0.4054984193	
	Н	2.8735035439	-0.7921025112	0.2317648793	Н	-2.0891240541	-0.7606865104	0.7055490607	Н	-0.5831149289	-2.4756954250	0.4054984193	
a 3 .								0.0000405500					
2 ³ A	Ru	0.3472419140	0.1414003459	0.0797003974	Ru	0.4444459332	-0.1551941346	0.0000135590	Ru	0.0000000000	-0.0000000000	-0.000000000	
	0	-1.3855820457	0.2625654282	0.2569668567	0	-0.3773581819	1.44188/318/	0.0226831402	0	0.0000000000	-0.0560856158	1.9158183285	
	0	2.5240771766	0.0021678386	-0.1422577948	O	-1.6729015147	-0.4748688472	-0.0963458378	0	0.0000000000	0.0560856158	-1.9158183285	
	Н	3.0257513241	0.7399420154	0.1944851508	H	-1.4552507295	0.6202702803	-0.0236378642	H	0.0000000000	0.6788383987	2.5125136639	
	Н	2.9367464718	-0.7938621806	0.1821159346	Н	-2.1036555071	-0.7/39/161/2	0.7021880028	Н	0.0000000000	-0.6788383987	-2.5125136639	
3 ³ A	Ru	0.0000000000	-0.0001543387	0.1138503939	Ru	0.4132513520	-0.1546456107	0.0051630660	Ru	0.0000000000	-0.0000000000	-0.0000000000	
	0	0.0000000000	0.0007962603	1.7617039964	0	-0.4072649281	1.4221235297	0.0369615295	0	0.0000000000	-0.0562338192	1.9178097192	
	0	-0.0000000000	-0.0014551164	-2.1410344929	O	-1.6903297569	-0.5045858908	-0.1139966089	0	0.0000000000	0.0562338192	-1.9178097192	
	Н	0.7704512071	0.0129671962	-2.6974814806	Н	-1.4015776274	0.6625452224	-0.0421442247	Н	0.0000000000	0.6818367394	2.5106820198	
	Н	-0.7704512071	0.0129671962	-2.6974814806	Н	-2.0787990396	-0.7673142507	0.7189172380	Н	0.0000000000	-0.6818367394	-2.5106820198	
13 A	Pu	0 2530302080	0 15/1203658	0 153/370511	P 11	0 4277131507	0 1658767747	0.0022851238	Pu	0 1501335000	0 1830010660	0.0840376050	
4 /1	. Ku	1 2611075848	0.1541295058	0.2620545258	Nu O	0.2012052122	1 4552205860	0.0422172582	. Ku	0.1501555000	0.0254242415	1 0922192214	
	0	2 4800422501	0.2551010108	0.1668652004	0	1 6768541756	0.4022475702	0.1094177975	0	0.2390118282	0.1440220472	1.9032103314	
	U U	2.4609433301	0.0031831709	0.1047006108		1 4259672120	-0.4923473793	-0.10841/7875	U U	0.2000317903	-0.1449339472	-1.8210294002	
	п	3.0880022078	0.7557674922	0.104/090108	п	-1.4556072159	0.01055/6505	-0.0408954555	п	-0.1933/92340	-0.01/33/3/13	2.3780330080	
	п	2.98043/3088	-0./900490045	0.0908191488	п	-2.08/90394/3	-0./332400084	0.7152801004	п	-0.2043909239	-0./399413413	-2.3088314941	
1 ¹ A	Ru	0.3156197420	0.1426107944	0.4428148854	Ru	0.4889993499	-0.0434753815	-0.1042059419	Ru	-0.3276412162	-0.0596608404	0.0063160945	
	0	-1.2474258266	0.2546471863	-0.0298245743	0	-0.3526301217	1.4866105925	-0.0840132031	0	0.0841708125	-0.1016958308	1.8188534191	
	0	2.4945033819	0.0008369005	0.2767338972	0	-1.5089795412	-0.4480656964	0.1589031306	0	0.0454766914	0.1065676329	-1.8072837103	
	Н	2.9887805415	0.7448673433	-0.0523637068	Н	-1.2928679804	0.7676084728	0.0896365859	Н	0.2419441203	0.6695312227	2.3497936902	
	Н	2.8967575384	-0.7907487523	-0.0663499160	Н	-1.7444377776	-0.6827505563	1.0485503699	Н	0.4289064897	-0.5779133319	-2.3422630540	

The grey highlighted TS are optimized at MRCI/cc-pVDZ-PP(Ru) cc-pVDZ(H) aug-cc-pVDZ(O). All other structures are optimized at MRCI/cc-pVTZ-PP(Ru) cc-pVTZ(H) aug-cc-pVTZ(O).

Table S6. Total energies (a.u.) of optimal geometries of the reactants, transition state, and products of the RuO + H₂O \rightarrow Ru(OH)₂ reaction for the first two quintets (1⁵A, 2⁵A), the first four triplet (1³A, 2³A, 3³A, 4³A), and the first singlet (1¹A) states.

State		Total energy of RuO + H_2O reacting products (a.u.)										
	Interm	ediate	T	S	Products							
	MRCI	MRCI+Q	MRCI	MRCI+Q	MRCI	MRCI+Q						
1 ⁵ A	-245.380595	-245.481342	-245.336644	-245.434783	-245.444645	-245.533297						
2 ⁵ A	-245.380567	-245.481273	-245.329243	-245.428893	-245.444698	-245.533234						
$1^{3}A$	-245.351600	-245.458504	-245.333034	-245.436714	-245.403830	-245.494451						
$2^{3}A$	-245.364523	-245.457565	-245.325976	-245.429525	-245.393832	-245.484247						
3 ³ A	-245.346647	-245.454583	-245.323614	-245.427430	-245.393624	-245.483946						
$4^{3}A$	-245.330938	-245.438278	-245.312765	-245.416998	-245.390701	-245.484407						
$1^{1}A$	-245.329479	-245.438740	-245.317217	-245.422845	-245.389835	-245.484635						

Table S7. Harmonic vibrational frequencies (cm⁻¹) of MRCI optimal geometries given in Table S5.

	Reactants	Transition States	Products
1 ⁵ A	119.8, 140.5, 286.5, 341.8, 560.0, 973.4, 1703.7, 3985.7, 4080.2	1713.2i, 278.7, 445.9, 575.4, 681.8, 813.9, 1400.5, 1972.5, 4018.7	37.1, 107.9, 380.4, 617.4, 658.4, 749.4, 769.0, 4059.3, 4114.5
2 ⁵ A	22.9, 141.7, 282.4, 384.1, 514.6, 970.8, 1704.7, 3976.5, 4080.0	1912.5i, 217.2, 511.8, 754.3, 800.9, 894.8, 1436.7, 1707.5, 3709.3	55.7, 143.2, 170.7, 559.2, 596.5, 669.1, 685.7, 4078.8, 4095.7
1 ³ A	91.4 223.9, 312.8, 337.5, 525.4, 965.0, 1702.2, 3980.9, 4076.3	1020.7i, 387.0, 620.5, 727.5, 756.0, 827.9, 1526.2, 1973.5, 4014.3	125.8, 149.7, 170.5, 616.7, 627.0, 657.5, 685.0, 4069.6, 4073.1
2 ³ A	86.5, 135.9, 325.5, 376.3, 484.8, 749.0, 1678.3, 3948.7, 4043.7	1107.1i, 356.0, 570.3, 673.0, 743.2, 824.7, 1499.8, 1961.3, 4017.6	132.4, 187.1, 413.6, 494.9, 645.2, 719.7, 800.5, 4068.9, 4072.4
3 ³ A		1732.1i, 364.4, 605.9, 626.5, 724.7, 818.9, 1433.5, 1884.3, 4006.0	141.0, 182.7, 408.9, 476.4, 643.3, 713.6, 801.6, 4068.1, 4071.3
4 ³ A	161.4, 205.1, 224.1, 291.0, 444.8, 1347.8, 1702.3, 3991.3, 4083.9	1316.2i, 363.5, 608.3, 674.8, 734.1, 802.4, 1483.5, 1911.9, 4008.9	79.6, 206.8, 574.5, 595.3, 657.0, 741.1, 1316.2, 4038.5, 4052.6
1 ¹ A	77.4, 207.7, 306.2, 339.4, 500.0, 1057.7, 1697.0, 3968.9, 4063.2	1624.5i, 450.6, 634.2, 668.2, 764.2, 876.1, 1459.8, 1944.9, 4034.1	88.7, 455.1, 542.6, 673.5, 687.9, 807.5, 844.0, 4021.8, 4025.6

Table S8. MRCI optimal geometries (Cartesian coordinates in Å) of the reactants, transition state, and products of the $RuO^+ + H_2O$) →
$Ru(OH)_2^+$ reaction for the first four quartet (1 ⁴ A, 2 ⁴ A, 3 ⁴ A, 4 ⁴ A), the first two doublet (1 ² A, 2 ² A), and the first sextet (1 ⁶ A) states	s.

			Reactants			Tr	ansition State				Products	
14A	Ru	0.1500735406	0.1602156348	0.1941391774	Ru	0.4567300323	-0.0482134207	-0.0961909985	Ru	-0.0019797675	0.0005203754	0.1371797952
	0	-1.4847276681	0.2834759158	0.1153230870	0	-0.3308802486	1.4786873267	-0.1008730909	0	-0.0223978534	1.8097061139	0.0899495880
	0	2.3802988460	-0.0123453925	0.3022890347	0	-1.4728695039	-0.4541577253	0.1777195534	0	0.0230642817	-1.8087064727	0.0938036086
	Н	2.9978582937	0.6990780702	0.4606205934	Н	-1.3011244705	0.8303818889	0.0809293941	Н	0.4864119710	2.5725818012	0.3557404915
	Н	2.8995086993	-0.8094293553	0.2138726141	Н	-1.7617718803	-0.7267706385	1.0472860833	Н	-0.4850986318	-2.5741018177	0.3533966480
2 ⁴ A	Ru	0.1498614531	0.1601218213	0.1941303829	Ru	0.4625067273	-0.0446422799	-0.1001005053	Ru	-0.0023797791	0.0006449307	0.1361641354
	0	-1.4849039792	0.2834998951	0.1153030811	0	-0.3112839397	1.5075914919	-0.1371938158	0	-0.0215119368	1.8100232396	0.0854338127
	0	2.3804190606	-0.0122573805	0.3023157200	0	-1.4831611116	-0.3962769782	0.2394011255	0	0.0220512978	-1.8087786194	0.0894807326
	Н	2.9981266628	0.6990245679	0.4606227609	Н	-1.2809366340	0.8414662468	0.0628540260	Н	0.4856318507	2.5707131515	0.3607239687
	Н	2.8995090136	-0.8093940078	0.2138726540	Н	-1.7970411131	-0.8282110496	1.0439101110	Н	-0.4837914326	-2.5726027024	0.3582674819
3 ⁴ A	Ru	0.2104091359	0.1544338068	0.1958925841	Ru	0.4684035675	-0.0485514668	-0.0787520035	Ru	0.0000000000	-0.0000000000	-0.3147827813
-	0	-1.4279710871	0.2791354572	0.1188174532	0	-0.2979492166	1.5066039717	-0.2078747926	0	-0.0365676735	-1.4019955602	0.8238682012
	0	2.3438837940	-0.0084013312	0.3007567588	0	-1.4521240529	-0.3519877368	0.2177908047	0	0.0365676735	1.4019955602	0.8238682012
	Н	2.9594735797	0.7072747790	0.4596975735	Н	-1.3311459138	0.7650240732	0.1938743616	Н	0.6071082029	-1.5123522074	1.5252290810
	Н	2.8572172886	-0.8114477932	0.2110803217	Н	-1.7971004554	-0.7911614104	0.9838325714	Н	-0.6071082029	1.5123522074	1.5252290810
1 ⁴ A	Pu	0.2114230230	0 1577637855	0 1770976202	Pu	0 4878622105	0.0561580166	0 11/7320201				
4 A	Nu O	1 4282410551	0.1377030801	0.1300308023	Ru O	0.3180/13021	1 5178206324	0.1661100740				
	0	2 3440000581	0.0085287115	0.2075/08208	0	1 3036860865	0.3774761743	0.2422165240	No conver	gence. Used the corr	a geometry from 34	A to obtain the energy
	н	2.9580060326	0.7070079213	0.4630163617	н	-1 3449034601	0.7565551411	0.1542673490	No conver	genee. Oseu ine san	ic geometry nom 5	A to obtain the energy.
	н	2.9500000520	-0.8124512114	0.2185498116	н	-1 8402473519	-0.7608231516	0.9932300626				
	11	2.0077527517	0.0121012111	0.2103 190110	11	1.01021/3019	0.7000251510	0.7752500020				
1 ² A	Ru	0.2140659629	0.1535778429	0.1928763798	Ru	0.4325606692	-0.1092533966	-0.0464368770	Ru	0.0007814266	-0.0008489912	-0.1735403733
	0	-1.5492207686	0.2892754525	0.1182233657	0	-0.2988578432	1.5493382193	-0.1754966050	0	-0.0695142254	1.7334475286	0.1216229898
	0	2.3828499834	-0.0117962762	0.2987293988	0	-1.4699475030	-0.4383291487	0.1872471607	0	0.0713412314	-1.7356071691	0.1198370481
	Н	2.9980943437	0.7039826446	0.4474237573	Н	-1.3377177756	0.8944912981	0.1062850383	Н	0.4965207764	2.4197989336	0.4805516993
	Н	2.8972221898	-0.8140447908	0.2289916049	Н	-1.7359536184	-0.8163195410	1.0372722246	Н	-0.4991292090	-2.4167903019	0.4815987674
2 ² A	Ru	0.2133773721	0.1529126306	0.2016274902	Ru	0.4787506683	-0.0944034996	-0.0577355847	Ru	0.0014363744	-0.0322772463	-0.5240406763
	0	-1.5471534523	0.2889840678	0.1127683555	0	-0.3132716307	1.5013499414	-0.2201746684	0	-0.1755650997	1.6501204186	0.1452523439
	ŏ	2.3820499124	-0.0112663875	0.3004104785	ŏ	-1.4705514224	-0.3701399241	0.2523883662	Ő	0.1720798562	-1.6533549688	0.1453366922
	H	2 9988668037	0 7036966806	0 4467010694	Ĥ	-1 3293902860	0 9293732759	0 1346253173	H	0 5105855983	2 1298969705	0 6329462276
	Н	2.8958710749	-0.8133321185	0.2247371130	Н	-1.7754534003	-0.8862523626	0.9997675110	Н	-0.5085367292	-2.0943851744	0.6305756179
16A	Ru	0.2204462185	0.1548714693	0.1931586192	Ru	0.7342920567	-0.3476735455	-0.1663128690	Ru	-0.0005979292	0.0001338717	-0.0230623355
	0	-1.5670136433	0.2877008883	0.1174502585	0	-0.0258147724	1.6043626866	-0.2904482579	0	0.2209794336	1.8210689842	0.0216265870
	0	2.3864445070	-0.0100793965	0.3011379337	0	-1.2640118170	-0.2212759617	0.2530828359	0	-0.2215313635	-1.8208280392	0.0220472330
	Н	3.0056202203	0.7029501952	0.4506018626	Н	-0.9933111871	0.9211836442	0.0824994892	Н	0.3217551819	2.6354234757	0.5048686447
	Н	2.8975144088	-0.8144482833	0.2238958327	Н	-1.7460177961	-0.5869394301	1.0729277708	Н	-0.3206053228	-2.6357982925	0.5045900021

All other structures are optimized at MRCI/cc-pVTZ-PP(Ru) cc-pVTZ(H) aug-cc-pVTZ(O).

	Reactants	Transition States	Products
1 ⁴ A	89.5, 107.6, 344.2, 349.3, 572.9, 1147.6, 1735.4, 3931.7, 4007.5	1864.4i, 479.0, 602.6, 668.1, 890.8, 974.8, 1300.9, 1977.9, 3956.2	129.4, 161.5, 231.6, 558.4, 594.8, 822.6, 826.3, 3968.9, 3983.4
2 ⁴ A	72.8, 119.0, 340.7, 349.2, 573.8, 1147.9, 1736.0, 3931.9, 4007.7	1984.6i, 449.2, 559.2, 618.8, 830.4, 925.4, 1255.2, 1974.7, 3830.5	134.4, 157.6, 243.0, 553.8, 597.9, 822.2, 825.7, 3968.1, 3982.6
3 ⁴ A	18.7i, 154.8, 400.9, 434.8, 609.2, 1052.0, 1731.1, 3903.6, 3978.5	1297.2i, 443.1, 523.7, 710.7, 839.8, 973.7, 1349.7, 2163.7, 4067.2	279.8, 522.0, 530.0, 751.9, 879.1, 986.0, 2153.7, 3922.4, 3968.4
4 ⁴ A	55.1, 143.3, 400.4, 435.6, 608.9, 1053.9, 1730.9, 3904.4, 3979.3	1647.5i, 400.0, 496.2, 719.6, 775.4, 874.0, 1278.8, 2090.5, 3979.8	-
1 ² A	107.7, 183.3, 349.6, 374.5, 622.6, 675.0, 1739.7, 3926.6, 4003.9	1891.8i, 464.6, 555.7, 672.4, 769.8, 944.7, 1326.1, 1797.0, 3799.1	92.8, 397.2, 524.9, 604.3, 690.7, 855.5, 865.9, 3902.1, 3918.6
2 ² A	111.7, 184.2, 350.7, 375.2, 584.5, 675.2, 1740.9, 3926.7, 4003.5	1764.1i, 470.2, 554.9, 592.3, 732.3, 944.8, 1346.9, 1848.5, 3926.1	164.2, 589.7, 632.1, 795.8, 927.9, 999.4, 1106.5, 3905.5, 4194.0
16A	100.7, 165.3, 358.8, 379.4, 615.9, 635.7, 1735.3, 3919.0, 3995.5	1487.1i, 400.8, 513.7, 714.5, 971.8, 1030.7, 1274.6, 1871.3, 3175.6	91.8, 125.4, 194.4, 331.1, 412.2, 776.2, 841.9, 4006.5, 4020.3

Table S9. Harmonic vibrational frequencies (cm⁻¹) of MRCI optimal geometries given in Table S8

Table S10. Total energies (a.u.) of optimal geometries of the reactants, transition state, and products of the $\text{RuO}^+ + \text{H}_2\text{O} \rightarrow \text{Ru(OH)}_2^+$ reaction for the first four quartets (1⁴A, 2⁴A, 3⁴A, 4⁴A), the first two doublet (1²A, 2²A), and the first sextet (1⁶A) states.

State		Tota	al energy of RuO ⁺ + H ₂ O reacting products (a.u.)							
	Interm	ediate	T	S	Products					
	MRCI	MRCI+Q	MRCI	MRCI+Q	MRCI	MRCI+Q				
1^4 A	-245.110452	-245.208999	-245.053952	-245.154271	-245.101846	-245.191876				
2^4 A	-245.110370	-245.208921	-245.041200	-245.142492	-245.101758	-245.191783				
3 ⁴ A	-245.098670	-245.201180	-245.030675	-245.133822	-245.096016	-245.191904				
4^4 A	-245.098315	-245.200911	-245.012842	-245.112806	-245.068340	-245.163550				
1^2 A	-245.074994	-245.160251	-245.039493	-245.130859	-245.098378	-245.193448				
$2^{2}A$	-245.074782	-245.160289	-245.040073	-245.131031	-245.066715	-245.155556				
$1^{6}A$	-245.103974	-245.187976	-245.039990	-245.118894	-245.116742	-245.201722				

			Reactants			Tra	ansition State		Products				
1 ⁴ A	Ru	-0.8857945363	1.0645114228	-0.3069587976		Ru 0.48583	9 -0.159057 -0.00	00326	Ru	0.0003370622	-0.0000982877	0.0005737372	
• • •	0	0.6245034977	0.2869708114	0.0299249010		<mark>O -0.42026</mark> 3	3 1.394287 0.01	8152	0	-0.0819286493	1.9851694891	-0.0608584392	
	Н	0.0826828257	-2.6898045530	0.4135758395		<mark>0 -1.83045</mark> 9	9 -0.508984 -0.11	10660	0	0.0816979363	-1.9854162074	-0.0611852507	
	н	0.9296416121	-1.4733449118	0.1607088731		H -1.352388	8 0.697989 -0.04	14240	н	0.4946424357	2.3884116991	0.5756843853	
	0	0.9926019258	-2.4421221186	0.2721474844		H -2.018748	8 -0.781895 0.79	98662	н	-0.4947487849	-2.3880666929	0.5758556986	
	Du	0.9736095663	1 0602807084	0.2604450050					Du	0 0002222048	0.0001041386	0 0002727927	
2 ⁴ A	ĸu	-0.8720985005	1.0092807984	-0.3004430030					ĸu	0.0003232048	-0.0001041286	-0.0003727837	
	0	0.6248390029	0.2807316405	0.0056928271					0	-0.0828165854	1.9855231292	-0.0584966078	
	Н	0.0725591234	-2.6853670750	0.4271995979	Us	ed the 1 ⁴ A geometr	ry to do a single po	int calculation	0	0.0826018446	-1.9857834836	-0.0588343396	
	Н	0.9314212287	-1.4757313507	0.1845118385					н	0.4959554075	2.3918488030	0.5737995051	
	0	0.9875145364	-2.4427033621	0.3124390422					н	-0.4960638714	-2.3914843200	0.5739743572	
1 ² A	0	0.000000000	-0.000000000	-3.4891347208	Ru	-0.1395744489	0.0001185510	-0.3838717944	Ru	0.000000000	-0.000000000	-0.0113729502	
	Н	0.000000000	-0.7455490452	-2.8949850242	0	1.4679177158	-0.0082136424	0.4708909979	0	-0.0611910050	1.9198415151	0.0324467192	
	Н	0.000000000	0.7455490452	-2.8949850242	0	-0.5615958556	0.0586721584	1.7350038604	0	0.0611910050	-1.9198415151	0.0324467192	
	Ru	0.000000000	-0.0000000000	0.2961388484	н	0.4413355644	0.0312186117	1.5825322270	н	0.8154630588	2.2867447398	0.0551659845	
	0	0.000000000	-0.000000000	1.9831525594	н	-0.8320497102	-0.8440526368	1.8947859342	н	-0.8154630588	-2.2867447398	0.0551659845	
2 ² A													
	Use	ed the 1 ² A geometr	y to do a single poi	nt calculation	Used the 1 ² A geometry to do a single point calculation				Used the 1 ² A geometry to do a single point calculation				

Table S11. MRCI optimal geometries (Cartesian coordinates in Å) of the reactants, transition state, and products of the RuO⁻ + H₂O \rightarrow Ru(OH)₂⁻ reaction for the first two quartet (1⁴A, 2⁴A) and the first two doublet (1²A, 2²A) states.

The grey highlighted structures are optimized at MRCI/aug-cc-pVDZ-PP(Ru) cc-pVDZ(H) aug-cc-pVDZ(O). All other structures are optimized at MRCI/aug-cc-pVTZ-PP(Ru) cc-pVTZ(H) aug-cc-pVTZ(O). The green highlighted structure is optimized at DFT-MN15/ aug-cc-pVDZ-PP(Ru) cc-pVDZ(H) aug-cc-pVDZ(O).

Table S12. Total energies (a.u.) of optimal geometries of the reactants, transition state, and products of the $RuO^- + H_2O \rightarrow Ru(OH)_2^-$ reaction for the first two quartet (1⁴A, 2⁴A) and the first two doublet (1²A, 2²A) states.

State	Total energy of RuO [−] + H ₂ O reacting products (a.u.)					
	Intermediate		TS		Products	
	MRCI	MRCI+Q	MRCI	MRCI+Q	MRCI	MRCI+Q
1^4 A	-245.424785	-245.530067	-245.382325	-245.485853	-245.498484	-245.593741
2^4 A	-245.424744	-245.530022	-245.380955	-245.484964	-245.498367	-245.593536
1^2A	-245.410662	-245.499918	-245.372464	-245.476123	-245.457301	-245.556542
2^2A	-245.410309	-245.499555	-245.360603	-245.466479	-245.448781	-245.549738

Figure S1. Potential energy curves of RuO⁺ as a function of the Ru-O distance at the MRCI level of theory.

Figure S2. Potential energy curves of RuO as a function of the Ru-O distance at the MRCI level of theory.

Figure S3. Potential energy curves of RuO⁻ as a function of the Ru-O distance at the MRCI level of theory.