1	Electronic Supplementary Information
2	for
3	Anion Exchange Behavior of M ^{II} Al Layered Double
4	Hydroxides: a Molecular Dynamics and DFT Study
5	Xiao-Jie Zhao,† Yu-Quan Zhu,† Si-Min Xu,† Hui-Min Liu,†§ Pan Yin,† Yu-Liang
6	Feng, [†] Hong Yan*
7	[†] State Key Laboratory of Chemical Resource Engineering, College of Chemistry,
8	Beijing University of Chemical Technology, Beijing 100029, China
9	[§] National institutes of pharmaceutical Research and Development Company Limited,
10	Beijing 102206, China
11	
12	Corresponding Author

13 *(H. Y.) Tel: +86-010-64448331. E-mail: <u>yanhong@mail.buct.edu.cn</u>

Contents
Contents

Item	Title	Number
	The total potential energy diagram of Mg ₂ Al-Cl-LDH under different simulation time	S1
	Snapshots of Mg ₂ Al-Cl-LDH at different simulation time, 200 ps (a), 400 ps (b), 800 ps (c), 1 ns (d), 10 ns (e), and 15 ns (f).	S2
	Snapshots of (a-i) Ni ₂ Al-A-LDHs (A= OH ⁻ , Cl ⁻ , Br ⁻ , NO ₃ ⁻ , HCOO ⁻ , $C_6H_5SO_3^-$, CO_3^{2-} , SO_4^{2-} , PO_4^{3-}) after MD simulations of 2 ns.	S3
	Snapshots of (a-i) Zn ₂ Al-A-LDHs (A= OH ⁻ , Cl ⁻ , Br ⁻ , NO ₃ ⁻ , HCOO ⁻ , C ₆ H ₅ SO ₃ ⁻ , CO ₃ ²⁻ , SO ₄ ²⁻ , PO ₄ ³⁻) after MD simulations of 2 ns.	S4
	Snapshots of Mg _{<i>R</i>} Al-A-LDHs intercalated with different anions(A= OH ⁻ , Cl ⁻ , Br ⁻ , NO ₃ ⁻ , HCOO ⁻ , C ₆ H ₅ SO ₃ ⁻ , CO ₃ ²⁻ , SO ₄ ²⁻ , PO ₄ ³⁻ , for monovalent anions and divalent anions, $R = 1.6$, 2.6, 3.5, 5.0 and 8.0; for trivalent anions, $R = 1.4$, 3.0, 5.0 and 8.0) after molecular dynamics simulations of 200 ps.	S5
	Snapshots of Ni _{<i>R</i>} Al-A-LDHs intercalated with different anions(A= OH ⁻ , Cl ⁻ , Br ⁻ , NO ₃ ⁻ , HCOO ⁻ , C ₆ H ₅ SO ₃ ⁻ , CO ₃ ²⁻ , SO ₄ ²⁻ , PO ₄ ³⁻ , for monovalent anions and divalent anions, $R = 1.6$, 2.6, 3.5, 5.0 and 8.0; for trivalent anions, $R = 1.4$, 3.0, 5.0 and 8.0) after molecular dynamics simulations of 200 ps.	S6
Figure	Snapshots of Zn _{<i>R</i>} Al-A-LDHs intercalated with different anions(A= OH ⁻ , Cl ⁻ , Br ⁻ , NO ₃ ⁻ , HCOO ⁻ , C ₆ H ₅ SO ₃ ⁻ , CO ₃ ²⁻ , SO ₄ ²⁻ , PO ₄ ³⁻ , for monovalent anions and divalent anions, $R = 1.6$, 2.6, 3.5, 5.0 and 8.0; for trivalent anions, $R = 1.4$, 3.0, 5.0 and 8.0) after molecular dynamics simulations of 200 ps.	S7
	The van der Waals energies of (a) Mg _R Al-A-LDHs, (b) Ni _R Al-A-LDHs and (c) Zn _R Al-A-LDHs (A = OH ⁻ , Cl ⁻ , Br ⁻ , NO ₃ ⁻ , HCOO ⁻ , C ₆ H ₅ SO ₃ ⁻ , CO ₃ ²⁻ , SO ₄ ²⁻ , PO ₄ ³⁻) as a function of <i>R</i> . The evenese distance (in [§]) between the U stem of budgeoutl group in	S8
	the layers and X or O atom in the interlayer anions $(L_{X_{H}} \text{ or } L_{O_{H}}))$ in Mg ₂ Al-A-LDHs (A = OH ⁻ , Cl ⁻ , Br ⁻ , NO ₃ ⁻ , HCOO ⁻ , CO ₃ ²⁻ , SO ₄ ²⁻ , PO ₄ ³⁻) from the side view.	S9
	The average distance (in Å) between the H atom of hydroxyl group in the layers and X or O atom in the interlayer anions $(L_{X_H} \text{ or } L_{O_H}))$ in Ni ₂ Al-A-LDHs (A = OH ⁻ , Cl ⁻ , Br ⁻ , NO ₃ ⁻ , HCOO ⁻ , CO ₃ ²⁻ , SO ₄ ²⁻ , PO ₄ ³⁻) from the side view.	S10
	The average distance (in Å) between the H atom of hydroxyl group in the layers and X or O atom in the interlayer anions (L_{XH} or L_{OH})) in Zn ₂ Al-A-LDHs (A = OH ⁻ , Cl ⁻ , Br ⁻ , NO ₃ ⁻ , HCOO ⁻ , CO ₃ ²⁻ , SO ₄ ²⁻ ,	S11
	PO_4^{3-}) from the side view. The relationship between the relative binding energies and (a) the average distance (<i>L</i>) between the H atom of hydroxyl group in the layers and X or O atom in the interlayer anions (XH or OH) (b) the charge transfer (Δq) of anions or (c) the electronegativity of anions in Ni ₂ Al-A-LDHs (A = OH ⁻ , Cl ⁻ ,	S12

	Br ⁻ , NO ₃ ⁻ , HCOO ⁻ , CO ₃ ²⁻ , SO ₄ ²⁻ , PO ₄ ³⁻). Red solid line is the	
	fitting line. The relationship between the relative binding energies and (a) the	
	average distance (<i>L</i>) between the H atom of hydroxyl group in the layers and X or O atom in the interlayer anions (XH or OH) (b) the charge transfer (Δq) of anions or (c) the electronegativity of anions in Zn ₂ Al-A-LDHs (A = OH ⁻ , Cl ⁻ , Br ⁻ , NO ₃ ⁻ , HCOO ⁻ , CO ₃ ²⁻ , SO ₄ ²⁻ , PO ₄ ³⁻). Red solid line is the fitting line	S13
	The schematic diagram of the distance between the oxygen or halide atoms in an anion and the hydrogen atom in the adjacent H ₂ O (d) under the top view, and the possibility of d (upper right) in Ni ₂ Al-A-LDHs after MD simulations of 2 ns.	S14
	The schematic diagram of the distance between the oxygen or halide atoms in an anion and the hydrogen atom in the adjacent H ₂ O (<i>d</i>) under the top view, and the possibility of <i>d</i> (upper right) in Zn ₂ Al-A-LDHs after MD simulations of 2 ns.	S15
	The linearly fitted mean square displacements (MSD) of eight anions for Ni ₂ Al-A-LDHs (A = OH ⁻ , Cl ⁻ , Br ⁻ , NO ₃ ⁻ , HCOO ⁻ , CO ₃ ²⁻ , SO ₄ ²⁻ , PO ₄ ³⁻)	S16
	The linearly fitted mean square displacements (MSD) of eight anions for Zn ₂ Al-A-LDHs (A = OH ⁻ , Cl ⁻ , Br ⁻ , NO ₃ ⁻ , HCOO ⁻ , CO ₃ ²⁻ , SO ₄ ²⁻ , PO ₄ ³⁻)	S17
	Lattice parameters of Mg ₂ Al-Cl-LDHs under different simulation	S 1
	The calculated energies of Mg ₂ Al-Cl-LDHs under the orbital cutoff ranging from 3.7 Å to 6.7 Å	S2
	Chemical formulae and lattice parameters of the calculated $M^{II}_{n}Al-A-LDHs(M^{II} = Mg, Ni, Zn; R ranges from 1.4 to 8; A = OH^-, Cl^-, Br^-, NO_3^-, HCOO^-, C_6H_5SO_3^-, CO_3^{2-}, SO_4^{2-}, and PO_4^{3-}) after molecular dynamics simulation of 200 ps$	S3
	The lattice parameter a of M^{II}_{R} Al-Cl-LDHs and M^{II} (OH) ₂ ($M^{II} = Mg$, Ni, Zn) when $R>4$ after simulation of 200 ps	S4
Table	Energy composition of $M^{II}_{R}Al-A-LDHs$ ($M^{II} = Mg$, Ni, Zn; <i>R</i> ranges from 1.4 to 8; $A = OH^-$, Cl^- , Br^- , NO_3^- , $HCOO^-$, $C_6H_5SO_3^-$, CO_3^{2-} , SO_4^{2-} , and PO_4^{3-}), where E_{tot} , E_a , E_c , $E_{non-bond}$, E_{vdW} , E_e , E_b represents the total potential energy, angle term, cross term, non-bond energy, van der waals energy, electrostatic energy and relative binding	S5
	Gibbs free energies of $M^{II}_{2}Al-A-LDHs$ ($M^{II}=Mg$, Ni, Zn; $A = OH^{-}$, Cl^{-} , Br^{-} , NO_{3}^{-} , $HCOO^{-}$, $C_{6}H_{5}SO_{3}^{-}$, CO_{3}^{2-} , SO_{4}^{2-} , and PO_{4}^{3-}), along with those of the Mg ₂ Al-A-LDH with correction for non-covalent interaction (Mg ₂ Al-A-LDH-1)	S6
	Free energy change of anion-exchange reaction of Ni ₂ Al-A-LDHs	S 7
	Free energy change of anion-exchange reaction of Zn ₂ Al-A-LDHs	S 8
	Free energy change of anion-exchange reaction of Mg ₂ Al-A-LDHs with correction for non-covalent interaction	S9
	The calculated Mulliken charge (q) of the anion when it is introduced into M ₂ Al-A-LDHs (M ^{II} =Mg, Ni, Zn) and the charge transfers	S10
	The frontier orbital energies, ionization potential, electron affinity	S11

and electronegativity of anions

- 17 Fig. S1. The total potential energy diagram of Mg2Al-Cl-LDH under different
- 18 simulation time.

19

20 Fig. S2. Snapshots of Mg₂Al-Cl-LDH at different simulation time, 200 ps (a), 400 ps

21 (b), 800 ps (c), 1 ns (d), 2 ns (e), 4 ns (f), 10 ns (g), and 15 ns (h).

- 25 Fig. S3. Snapshots of (a-i) Ni₂Al-A-LDHs (A= OH⁻, Cl⁻, Br⁻, NO₃⁻, HCOO⁻,
- $C_6H_5SO_3^-$, CO_3^{2-} , SO_4^{2-} , PO_4^{3-}) after MD simulations of 2 ns.

30	Fiσ	S4	Snanshots	of (a-i)	Zn ₂ Al-A-LDHs	(A =	OH- CI-	Rr⁻	NO_2^-	HCOO-
50	1 161	D I.	Shupshots	01 (u 1)		(11	$\circ n$, $\circ n$, ы,	100,	11000,

- $C_6H_5SO_3^-$, CO_3^{2-} , SO_4^{2-} , PO_4^{3-}) after MD simulations of 2 ns.

Fig. S5. Snapshots of Mg_RAl-A-LDHs intercalated with different anions (A= OH⁻, Cl⁻, Br⁻, NO₃⁻, HCOO⁻, C₆H₅SO₃⁻, CO₃²⁻, SO₄²⁻, PO₄³⁻, for monovalent anions and divalent anions, R = 1.6, 2.6, 3.5, 5.0 and 8.0; for trivalent anions, R = 1.4, 3.0, 5.0 and 8.0) after molecular dynamics simulations of 200 ps.

b Ni₂₆Al₁₀-OH-LDH

c Ni₂₈Al₈-OH-LDH

c Ni₂₈Al₈-Br-LDH

(C) NiAl-Br-LDH

c Ni₂₈Al₈-NO₃-LDH

2× 4× 1

13-7 -XY

and the state of

a Ni₂₂AI₁₄-OH-LDH

- YEL CALLAR

Y

- 46
- 47

e Ni₃₂Al₄-CI-LDH d Ni₃₀Al₆-CI-LDH

d Ni₃₀Al₆-OH-LDH

Gel

d Ni₃₀Al₆-Br-LDH

d Ni₃₀Al₆-NO₃-LDH

15

e Ni₃₂Al₄-Br-LDH

e Ni₃₂Al₄-OH-LDH

e Ni₃₂Al₄-NO₃-LDH

- e Ni₃₂Al₄-HCOO-LDH

Fig. S6. Snapshots of Ni_{*R*}Al-A-LDHs intercalated with different anions (A= OH⁻, Cl⁻, Br⁻, NO₃⁻, HCOO⁻, C₆H₅SO₃⁻, CO₃²⁻, SO₄²⁻, PO₄³⁻, for monovalent anions and divalent anions, R = 1.6, 2.6, 3.5, 5.0 and 8.0; for trivalent anions, R = 1.4, 3.0, 5.0 and 8.0) after molecular dynamics simulations of 200 ps.

Fig. S7. Snapshots of Zn_RAl -A-LDHs intercalated with different anions(A= OH⁻, Cl⁻, Br⁻, NO₃⁻, HCOO⁻, C₆H₅SO₃⁻, CO₃²⁻, SO₄²⁻, PO₄³⁻, for monovalent anions and divalent anions, R = 1.6, 2.6, 3.5, 5.0 and 8.0; for trivalent anions, R = 1.4, 3.0, 5.0 and 8.0) after molecular dynamics simulations of 200 ps.

Fig. S8. The van der Waals energies of (a) Mg_RAl-A-LDHs, (b) Ni_RAl-A-LDHs and (c) Zn_RAl-A-LDHs (A = OH⁻, Cl⁻, Br⁻, NO₃⁻, HCOO⁻, C₆H₅SO₃⁻, CO₃²⁻, SO₄²⁻, PO₄³⁻) as a function of *R*.

63

64

70

Fig. S9. The average distance (in Å) between the H atom of hydroxyl group in the layers and X or O atom in the interlayer anions ($L_{X,...H}$ or $L_{O,...H}$)) in Mg₂Al-A-LDHs (A $= OH^-, Cl^-, Br^-, NO_3^-, HCOO^-, CO_3^{2-}, SO_4^{2-}, PO_4^{3-}$) from the side view.

Fig. S10. The average distance (in Å) between the H atom of hydroxyl group in the

17 layers and X or O atom in the interlayer anions $(L_{X,H} \text{ or } L_{O,H})$ in Ni₂Al-A-LDHs (A

$$78 = OH^{-}, Cl^{-}, Br^{-}, NO_{3}^{-}, HCOO^{-}, CO_{3}^{2-}, SO_{4}^{2-}, PO_{4}^{3-})$$
 from the side view.

75

Fig. S11. The average distance (in Å) between the H atom of hydroxyl group in the

layers and X or O atom in the interlayer anions $(L_{X,H} \text{ or } L_{O,H})$ in Zn₂Al-A-LDHs (A

83 = OH^- , Cl^- , Br^- , NO_3^- , $HCOO^-$, CO_3^{2-} , SO_4^{2-} , PO_4^{3-}) from the side view.

Fig. S12. The relationship between the relative binding energies and (a) the average distance (*L*) between the H atom of hydroxyl group in the layers and X or O atom in the interlayer anions (X...H or O...H) (b) the charge transfer (Δq) of anions or (c) the electronegativity of anions in Ni₂Al-A-LDHs (A = OH⁻, Cl⁻, Br⁻, NO₃⁻, HCOO⁻, CO₃²⁻, SO₄²⁻, PO₄³⁻). Red solid line is the fitting line.

Fig. S13. The relationship between the relative binding energies and (a) the
average distance (*L*) between the H atom of hydroxyl group in the layers and X
or O atom in the interlayer anions (X...H or O...H) (b) the charge transfer (Δq)
of anions or (c) the electronegativity of anions in Zn₂Al-A-LDHs (A = OH⁻, Cl⁻,
Br⁻, NO₃⁻, HCOO⁻, CO₃²⁻, SO₄²⁻, PO₄³⁻). Red solid line is the fitting line.

Fig. S14. The schematic diagram of the distance between the oxygen or halide atoms 101 in an anion and the hydrogen atom in the adjacent $H_2O(d)$ under the top view, and the 102 103 possibility of *d* (upper right) in Ni₂Al-A-LDHs after MD simulations of 2 ns.

106

Fig. S15. The schematic diagram of the distance between the oxygen or halide atoms 107 in an anion and the hydrogen atom in the adjacent $H_2O(d)$ under the top view, and the 108 possibility of d (upper right) in Zn₂Al-A-LDHs after MD simulations of 2 ns. 109

Fig. S16. The linearly fitted mean square displacements (MSD) of eight anions for 113 $Ni_2Al-A-LDHs$ (A = OH⁻, Cl⁻, Br⁻, NO₃⁻, HCOO⁻, CO₃²⁻, SO₄²⁻, PO₄³⁻). 114

117

Fig. S17. The linearly fitted mean square displacements (MSD) of eight anions for 118

 $Zn_2Al-A-LDHs$ (A = OH⁻, Cl⁻, Br⁻, NO₃⁻, HCOO⁻, CO₃²⁻, SO₄²⁻, PO₄³⁻). 119

120 Table S1. Lattice parameters of Mg2Al-Cl-LDHs under different simulation time

Simulation			lattice pa	arameters		
time (ps)	a (Å)	<i>b</i> (Å)	<i>c</i> (Å)	α (°)	β (°)	γ (°)
200	18.22	18.21	22.17	90.63	89.37	120.01
400	18.23	18.22	22.19	90.63	89.37	120.01
800	18.22	18.21	22.18	90.63	89.37	120.01
1000	18.23	18.22	22.19	90.63	89.37	120.01
2000	18.23	18.25	22.14	90.28	89.64	120.00
4000	18.20	18.23	22.12	90.28	89.64	120.00
10000	18.22	18.21	22.18	90.63	89.37	120.01
15000	18.21	18.21	21.99	91.44	89.55	120.00

122 The determination of the orbital cut-off

In this work, the geometry of model Mg₂Al-Cl-LDHs was optimized under the 123 orbital cut-off ranging from 3.7 Å to 6.7 Å. The energy of Mg₂Al-Cl-LDHs is thus 124 calculated to be -3115.426434 Ha with the cut-off 3.7 Å, and -3115.42842 Å with 125 126 the cut-off 6.7 Å. Therefore, the difference of the calculation results under the cut-off of 3.7 Å and 6.7 Å is 0.001986 Ha. Given that the model of Mg₂Al-Cl-LDHs contains 127 32 atoms, the difference under the orbital cut-off of 3.7 Å and 6.7 Å is about 128 0.0000621 Ha/atom. Thus, in order to save the computational cost, the orbital cut-off 129 of 3.7 Å is applied in this work. 130

131 **Table S2.** The calculated energies of Mg₂Al-Cl-LDHs under the orbital cutoff ranging

132 f	rom 3	.'/ A	to (5.7	A

		Mg ₂ Al-Cl-LDHs										
	cutoff	utoff/Å 3.7		4.3		4.9	5.5	5	6.7			
	<i>E /</i> H	[a	-3115.426434	-3115.432	238	-3115.431	752 -3115.4	31223	-3	115.42842		
133												
134	Table	S3 .	. Chemical	formulae	and	lattice	parameters	of	the	calculated		

135 M^{II}_{R} Al-A-LDHs ($M^{II} = Mg$, Ni, Zn; *R* ranges from 1.4 to 8; A = OH⁻, Cl⁻, Br⁻, NO₃⁻,

136 HCOO⁻, C₆H₅SO₃⁻, CO₃²⁻, SO₄²⁻, and PO₄³⁻) after molecular dynamics simulation of

137 200 ps

model	anion	formula	α/°	β/°	y / °	<i>a /</i> Å	<i>b</i> / Å	c/Å
		Mg66Al42(OH)21642OH · 18H2O	92.2	89.1	120.0	18.1	18.1	21.2
		$Mg_{72}Al_{36}(OH)_{216}36OH \cdot 18H_2O$	90.7	89.8	120.0	18.2	18.2	21.4
	OII-	$Mg_{78}Al_{30}(OH)_{216}30OH \cdot 18H_2O$	91.2	89.5	120.0	18.3	18.3	21.7
	ОН	$Mg_{84}Al_{24}(OH)_{216}24OH \cdot 18H_2O$	90.6	89.9	120.2	18.4	18.4	21.8
		Mg90Al18(OH)21618OH · 18H2O	89.5	90.3	119.9	18.5	18.5	22.3
		Mg96Al12(OH)21612OH·18H2O	88.3	92.4	119.9	18.6	18.6	22.8
		Mg66Al42(OH)21642Cl·18H2O	89.7	90.4	119.8	18.1	18.1	21.8
		Mg72Al36(OH)21636Cl·18H2O	90.6	89.4	120.0	18.2	18.2	22.2
	C1-	Mg78Al30(OH)21630Cl·18H2O	89.7	89.5	119.9	18.3	18.3	22.3
	CI	Mg ₈₄ Al ₂₄ (OH) ₂₁₆ 24Cl·18H ₂ O	89.9	90.3	120.0	18.4	18.4	22.6
		Mg90Al18(OH)21618Cl·18H2O	91.0	89.2	120.0	18.5	18.5	22.9
		Mg96Al12(OH)21612Cl·18H2O	91.1	89.1	119.9	18.6	18.6	23.4
		Mg66Al42(OH)21642Br·18H2O	88.4	91.7	120.0	18.1	18.1	22.4
		Mg72Al36(OH)21636Br · 18H2O	89.7	90.5	120.0	18.2	18.2	22.7
	D -	Mg ₇₈ Al ₃₀ (OH) ₂₁₆ 30Br·18H ₂ O	89.7	90.3	119.9	18.3	18.3	22.9
	Br-	Mg ₈₄ Al ₂₄ (OH) ₂₁₆ 24Br·18H ₂ O	90.0	90.2	119.9	18.4	18.4	23.2
		Mg90Al18(OH)21618Br·18H2O	90.2	90.0	120.0	18.5	18.5	23.5
Mg _R Al-A-LDHs		Mg96Al12(OH)21612Br·18H2O	90.2	90.0	120.0	18.6	18.6	23.9
0		Mg66Al42(OH)21642NO3·18H2O	89.5	91.2	120.0	18.2	18.2	26.4
		Mg72Al36(OH)21636NO3·18H2O	89.8	90.7	119.9	18.2	18.2	26.6
	NO -	Mg78Al30(OH)21630NO3·18H2O	90.2	90.1	119.9	18.3	18.3	27.2
	INO3	Mg84Al24(OH)21624NO3·18H2O	90.0	90.1	119.7	18.4	18.4	27.7
		Mg90Al18(OH)21618NO3·18H2O	90.4	89.8	120.0	18.5	18.5	27.5
		Mg96Al12(OH)21612NO3·18H2O	90.3	90.0	120.1	18.6	18.6	27.4
		Mg ₆₆ Al ₄₂ (OH) ₂₁₆ 42HCOO·18H ₂ O	89.4	91.4	120.0	18.2	18.2	23.2
		Mg ₇₂ Al ₃₆ (OH) ₂₁₆ 36HCOO·18H ₂ O	90.0	90.4	119.9	18.2	18.2	23.1
		Mg ₇₈ Al ₃₀ (OH) ₂₁₆ 30HCOO·18H ₂ O	89.9	90.3	120.0	18.3	18.3	23.1
	ncoo	Mg ₈₄ Al ₂₄ (OH) ₂₁₆ 24HCOO·18H ₂ O	89.6	90.2	120.0	18.4	18.4	23.4
		Mg90Al18(OH)21618HCOO·18H2O	89.9	90.1	120.0	18.5	18.5	23.5
		Mg96Al12(OH)21612HCOO·18H2O	90.2	89.7	119.9	18.6	18.6	23.7
		$Mg_{66}Al_{42}(OH)_{216}42C_{6}H_{5}O_{3}S\!\cdot\!18H_{2}O$	88.1	96.7	120.8	18.4	18.5	43.2
		Mg ₇₂ Al ₃₆ (OH) ₂₁₆ 36C ₆ H ₅ O ₃ S·18H ₂ O	87.6	96.1	120.0	18.5	18.4	42.3
	C ₆ H ₅ SO ₃ ⁻	Mg ₇₈ Al ₃₀ (OH) ₂₁₆ 30C ₆ H ₅ O ₃ S·18H ₂ O	88.8	94.4	120.4	18.4	18.4	42.9
		Mg84Al24(OH)21624C6H5O3S·18H2O	88.3	91.8	120.9	18.5	18.4	42.2
		Mg90Al18(OH)21618C6H5O3S·18H2O	88.6	92.1	120.1	18.6	18.6	42.7
		0.0 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0						

		$Mg_{96}Al_{12}(OH)_{216}12C_6H_5O_3S\!\cdot\!18H_2O$	89.6	90.5	120.0	18.6	18.6	43.3
		Mg66Al42(OH)21621CO3 · 18H2O	90.6	89.9	120.1	18.1	18.1	21.9
		Mg72Al36(OH)21618CO3 · 18H2O	90.2	90.2	120.0	18.2	18.2	22.2
	CO^{2-}	Mg78Al30(OH)21615CO3 · 18H2O	89.2	90.9	119.9	18.3	18.3	22.4
	CO_3	Mg84Al24(OH)21612CO3 · 18H2O	89.4	90.5	120.0	18.4	18.4	22.6
		$Mg_{90}Al_{18}(OH)_{216}9CO_3 \cdot 18H_2O$	89.9	89.9	119.8	18.5	18.5	22.7
		Mg96Al12(OH)2166CO3 · 18H2O	89.4	90.4	119.9	18.6	18.6	23.1
		Mg66Al42(OH)21621SO4·18H2O	87.7	92.1	120.1	18.1	18.1	25.6
		Mg72Al36(OH)21618SO4·18H2O	89.5	91.2	120.1	18.2	18.2	26.0
	SO^{2-}	Mg ₇₈ Al ₃₀ (OH) ₂₁₆ 15SO ₄ ·18H ₂ O	88.4	92.6	119.9	18.3	18.3	26.1
	504	Mg84Al24(OH)21612SO4·18H2O	88.9	91.5	120.0	18.4	18.4	26.8
		Mg90Al18(OH)2169SO4 · 18H2O	88.6	91.3	120.0	18.5	18.5	27.1
		Mg96Al12(OH)2166SO4.18H2O	89.9	90.0	120.0	18.6	18.6	27.1
		Mg ₆₃ Al ₄₅ (OH) ₂₁₆ 15PO ₄ ·18H ₂ O	93.4	86.4	119.9	18.0	18.0	24.5
		Mg72Al36(OH)21612PO4·18H2O	90.9	87.8	119.9	18.1	18.2	24.9
	PO_4^{3-}	$Mg_{81}Al_{27}(OH)_{216}9PO_4 \cdot 18H_2O$	90.3	89.4	119.9	18.0	18.0	24.9
		$Mg_{90}Al_{18}(OH)_{216}6PO_4{\cdot}18H_2O$	90.0	89.8	120.0	18.5	18.5	25.4
		Mg96Al12(OH)2164PO4 · 18H2O	89.6	90.4	120.0	18.6	18.6	25.0
		$Ni_{66}Al_{42}(OH)_{216}42OH \cdot 18H_2O$	91.6	89.3	120.0	18.0	18.0	21.1
		Ni ₇₂ Al ₃₆ (OH) ₂₁₆ 36OH·18H ₂ O	90.7	89.9	120.0	18.1	18.1	21.3
	<u>О</u> Ц-	Ni ₇₈ Al ₃₀ (OH) ₂₁₆ 30OH·18H ₂ O	90.5	89.7	120.1	18.2	18.2	21.6
	OII	Ni ₈₄ Al ₂₄ (OH) ₂₁₆ 24OH·18H ₂ O	90.0	90.3	119.9	18.3	18.3	21.9
		Ni ₉₀ Al ₁₈ (OH) ₂₁₆ 18OH·18H ₂ O	92.0	89.0	120.1	18.4	18.4	22.3
		Ni ₉₆ Al ₁₂ (OH) ₂₁₆ 12OH·18H ₂ O	89.2	91.4	120.0	18.5	18.5	22.6
		Ni ₆₆ Al ₄₂ (OH) ₂₁₆ 42Cl·18H ₂ O	89.1	90.6	120.0	18.0	18.0	21.7
		Ni ₇₂ Al ₃₆ (OH) ₂₁₆ 36Cl·18H ₂ O	90.2	89.3	120.1	18.2	18.1	22.1
	C1-	Ni ₇₈ Al ₃₀ (OH) ₂₁₆ 30Cl·18H ₂ O	90.2	89.5	120.1	18.2	18.2	22.3
	CI	$Ni_{84}Al_{24}(OH)_{216}24Cl \cdot 18H_2O$	90.5	89.7	120.2	18.3	18.3	22.4
		Ni ₉₀ Al ₁₈ (OH) ₂₁₆ 18Cl·18H ₂ O	90.6	89.5	119.9	18.4	18.4	22.7
NIRAI-A-LDIIS		Ni ₉₆ Al ₁₂ (OH) ₂₁₆ 12Cl·18H ₂ O	90.1	90.0	120.0	18.5	18.5	23.1
		$Ni_{66}Al_{42}(OH)_{216}42Br \cdot 18H_2O$	89.8	90.3	120.0	18.1	18.1	22.3
		Ni ₇₂ Al ₃₆ (OH) ₂₁₆ 36Br·18H ₂ O	90.8	88.8	120.1	18.2	18.2	22.5
	D	Ni ₇₈ Al ₃₀ (OH) ₂₁₆ 30Br·18H ₂ O	90.2	89.4	120.1	18.3	18.2	22.9
	DI	$Ni_{84}Al_{24}(OH)_{216}24Br \cdot 18H_2O$	90.0	90.0	120.1	18.3	18.3	23.1
		Ni ₉₀ Al ₁₈ (OH) ₂₁₆ 18Br·18H ₂ O	90.5	89.6	120.0	18.4	18.4	23.3
		Ni ₉₆ Al ₁₂ (OH) ₂₁₆ 12Br·18H ₂ O	90.2	89.9	120.0	18.5	18.5	23.5
		$Ni_{66}Al_{42}(OH)_{216}42NO_{3}{\cdot}18H_{2}O$	89.3	91.8	120.1	18.1	18.1	26.3
	NO^{-}	Ni ₇₂ Al ₃₆ (OH) ₂₁₆ 36NO ₃ ·18H ₂ O	88.8	91.3	119.9	18.2	18.2	26.5
	NO3	Ni ₇₈ Al ₃₀ (OH) ₂₁₆ 30NO ₃ ·18H ₂ O	89.2	91.0	120.0	18.2	18.2	26.5
		$Ni_{84}Al_{24}(OH)_{216}24NO_3 \cdot 18H_2O$	90.0	89.9	120.1	18.3	18.3	27.1

		Ni90Al18(OH)21618NO3·18H2O	90.2	90.0	120.2	18.4	18.4	27.8
		Ni ₉₆ Al ₁₂ (OH) ₂₁₆ 12NO ₃ ·18H ₂ O	90.3	89.8	120.0	18.5	18.5	27.5
		$Ni_{66}Al_{42}(OH)_{216}42HCOO \cdot 18H_2O$	90.2	90.1	120.0	18.1	18.1	23.2
		Ni ₇₂ Al ₃₆ (OH) ₂₁₆ 36HCOO·18H ₂ O	90.1	90.2	120.0	18.2	18.2	23.0
		Ni ₇₈ Al ₃₀ (OH) ₂₁₆ 30HCOO·18H ₂ O	90.9	89.2	120.1	18.2	18.2	23.0
	нсоо	Ni ₈₄ Al ₂₄ (OH) ₂₁₆ 24HCOO·18H ₂ O	89.9	90.1	120.3	18.3	18.4	23.3
		Ni ₉₀ Al ₁₈ (OH) ₂₁₆ 18HCOO · 18H ₂ O	90.0	90.1	120.0	18.4	18.4	23.4
		Ni ₉₆ Al ₁₂ (OH) ₂₁₆ 12HCOO·18H ₂ O	90.5	89.5	120.0	18.5	18.5	23.5
		$Ni_{66}Al_{42}(OH)_{216}42C_{6}H_{5}O_{3}S\cdot 18H_{2}O$	90.0	92.1	120.4	18.5	18.5	42.3
		$Ni_{72}Al_{36}(OH)_{216}36C_6H_5O_3S \cdot 18H_2O$	89.7	92.5	120.3	18.3	18.5	41.5
	С Ц 50 -	$Ni_{78}Al_{30}(OH)_{216}30C_6H_5O_3S \cdot 18H_2O$	90.3	90.7	120.4	18.3	18.3	42.4
	C6H5SO3	Ni84Al24(OH)21624C6H5O3S · 18H2O	89.3	90.6	120.3	18.4	18.4	42.4
		Ni ₉₀ Al ₁₈ (OH) ₂₁₆ 18C ₆ H ₅ O ₃ S·18H ₂ O	90.5	90.0	120.2	18.4	18.4	42.7
		$Ni_{96}Al_{12}(OH)_{216}12C_6H_5O_3S \cdot 18H_2O$	90.4	89.9	120.0	18.5	18.5	42.2
		Ni ₆₆ Al ₄₂ (OH) ₂₁₆ 21CO ₃ ·18H ₂ O	90.3	89.6	120.3	18.0	18.0	21.9
		Ni ₇₂ Al ₃₆ (OH) ₂₁₆ 18CO ₃ ·18H ₂ O	89.5	90.8	120.1	18.1	18.1	22.0
	CO^{2-}	Ni ₇₈ Al ₃₀ (OH) ₂₁₆ 15CO ₃ ·18H ₂ O	89.7	90.2	120.0	18.2	18.2	22.4
	0.03-	Ni ₈₄ Al ₂₄ (OH) ₂₁₆ 12CO ₃ ·18H ₂ O	89.1	91.0	120.0	18.3	18.3	22.5
		Ni ₉₀ Al ₁₈ (OH) ₂₁₆ 9CO ₃ ·18H ₂ O	90.1	90.0	119.9	18.4	18.3	22.6
		Ni ₉₆ Al ₁₂ (OH) ₂₁₆ 6CO ₃ ·18H ₂ O	89.2	90.5	120.0	18.5	18.5	23.1
		$Ni_{66}Al_{42}(OH)_{216}21SO_4 \cdot 18H_2O$	89.1	90.7	120.1	18.1	18.1	25.6
		Ni72Al36(OH)21618SO4·18H2O	90.2	89.9	120.1	18.1	18.1	25.9
	SO^{2-}	Ni ₇₈ Al ₃₀ (OH) ₂₁₆ 15SO ₄ ·18H ₂ O	90.4	89.8	120.0	18.2	18.2	26.1
	504	Ni ₈₄ Al ₂₄ (OH) ₂₁₆ 12SO ₄ ·18H ₂ O	90.3	89.6	119.9	18.3	18.3	26.5
		Ni ₉₀ Al ₁₈ (OH) ₂₁₆ 9SO ₄ ·18H ₂ O	90.1	89.9	120.1	18.4	18.4	26.7
		Ni ₉₆ Al ₁₂ (OH) ₂₁₆ 6SO ₄ ·18H ₂ O	89.9	90.2	120.0	18.5	18.5	26.7
		Ni63Al45(OH)21615PO4 · 18H2O	94.0	85.8	119.9	17.9	18.0	24.3
		Ni ₇₂ Al ₃₆ (OH) ₂₁₆ 12PO ₄ ·18H ₂ O	93.0	87.0	120.0	18.1	18.1	24.9
	PO4 ³⁻	Ni ₈₁ Al ₂₇ (OH) ₂₁₆ 9PO ₄ ·18H ₂ O	90.0	89.5	120.0	18.2	18.2	25.1
		Ni ₉₀ Al ₁₈ (OH) ₂₁₆ 6PO ₄ ·18H ₂ O	90.7	89.4	120.1	18.4	18.4	25.2
		Ni ₉₆ Al ₁₂ (OH) ₂₁₆ 4PO ₄ ·18H ₂ O	90.0	90.0	119.9	18.5	18.5	25.0
		$Zn_{66}Al_{42}(OH)_{216}42OH \cdot 18H_2O$	93.5	87.4	120.0	18.2	18.2	21.3
		$Zn_{72}Al_{36}(OH)_{216}36OH \cdot 18H_2O$	92.1	89.0	120.0	18.4	18.4	21.4
	OU-	$Zn_{78}Al_{30}(OH)_{216}30OH \cdot 18H_2O$	91.0	89.7	119.8	18.4	18.4	21.9
	ОП	$Zn_{84}Al_{24}(OH)_{216}24OH \cdot 18H_2O$	90.9	89.9	119.9	18.6	18.6	22.2
Zn _R Al-A-LDHs		$Zn_{90}Al_{18}(OH)_{216}18OH \cdot 18H_2O$	90.5	89.8	120.0	18.7	18.7	22.9
		Zn ₉₆ Al ₁₂ (OH) ₂₁₆ 12OH·18H ₂ O	87.9	92.5	120.0	18.8	18.8	23.0
		$Zn_{66}Al_{42}(OH)_{216}42Cl \cdot 18H_2O$	89.1	90.7	119.9	18.3	18.2	21.8
	Cl-	Zn ₇₂ Al ₃₆ (OH) ₂₁₆ 36Cl·18H ₂ O	90.1	90.0	119.9	18.4	18.3	22.5
		Zn ₇₈ Al ₃₀ (OH) ₂₁₆ 30Cl·18H ₂ O	89.8	90.3	120.1	18.5	18.5	22.6

	Zn ₈₄ Al ₂₄ (OH) ₂₁₆ 24Cl·18H ₂ O	90.3	89.8	120.0	18.6	18.6	22.8
	Zn90Al18(OH)21618Cl·18H2O	89.7	90.3	119.9	18.7	18.7	23.2
	Zn ₉₆ Al ₁₂ (OH) ₂₁₆ 12Cl·18H ₂ O	91.0	89.2	120.0	18.8	18.8	23.6
	$Zn_{66}Al_{42}(OH)_{216}42Br \cdot 18H_2O$	89.8	90.4	119.9	18.3	18.3	22.4
	Zn ₇₂ Al ₃₆ (OH) ₂₁₆ 36Br·18H ₂ O	89.8	90.4	120.0	18.4	18.4	22.7
D -	Zn ₇₈ Al ₃₀ (OH) ₂₁₆ 30Br·18H ₂ O	89.8	90.3	120.0	18.5	18.5	23.1
Br	$Zn_{84}Al_{24}(OH)_{216}24Br \cdot 18H_2O$	90.2	89.9	120.0	18.6	18.6	23.4
	Zn90Al18(OH)21618Br·18H2O	90.3	89.8	119.9	18.7	18.7	23.8
	Zn ₉₆ Al ₁₂ (OH) ₂₁₆ 12Br·18H ₂ O	90.2	89.9	120.0	18.8	18.8	24.0
	$Zn_{66}Al_{42}(OH)_{216}42NO_3 \cdot 18H_2O$	89.1	91.5	119.8	18.3	18.3	26.3
	Zn ₇₂ Al ₃₆ (OH) ₂₁₆ 36NO ₃ ·18H ₂ O	89.4	90.9	119.9	18.4	18.4	26.6
NO-	Zn ₇₈ Al ₃₀ (OH) ₂₁₆ 30NO ₃ ·18H ₂ O	89.1	91.1	119.9	18.5	18.5	26.6
INO3	$Zn_{84}Al_{24}(OH)_{216}24NO_3\cdot 18H_2O$	90.2	90.0	120.0	18.6	18.6	27.7
	$Zn_{90}Al_{18}(OH)_{216}18NO_3 \cdot 18H_2O$	90.8	89.6	120.0	18.7	18.7	27.4
	$Zn_{96}Al_{12}(OH)_{216}12NO_3 \cdot 18H_2O$	90.4	89.9	120.0	18.8	18.8	27.5
	$Zn_{66}Al_{42}(OH)_{216}42HCOO \cdot 18H_2O$	89.6	90.9	119.9	18.3	18.3	23.2
	Zn ₇₂ Al ₃₆ (OH) ₂₁₆ 36HCOO·18H ₂ O	89.8	90.7	119.8	18.4	18.4	23.1
ЧСОО-	Zn ₇₈ Al ₃₀ (OH) ₂₁₆ 30HCOO·18H ₂ O	89.9	90.4	119.9	18.5	18.5	23.2
HCOO	$Zn_{84}Al_{24}(OH)_{216}24HCOO \cdot 18H_2O$	90.5	89.6	120.0	18.6	18.6	23.6
	Zn ₉₀ Al ₁₈ (OH) ₂₁₆ 18HCOO·18H ₂ O	89.8	90.2	120.0	18.7	18.7	23.8
	$Zn_{96}Al_{12}(OH)_{216}12HCOO \cdot 18H_2O$	90.2	89.8	120.0	18.8	18.8	23.8
	$Zn_{66}Al_{42}(OH)_{216}42C_{6}H_{5}O_{3}S\cdot 18H_{2}O$	88.1	94.8	120.3	18.7	18.6	42.4
	$Zn_{72}Al_{36}(OH)_{216}36C_6H_5O_3S\!\cdot\!18H_2O$	88.1	94.7	119.9	18.6	18.5	42.5
C/H/SO-	$Zn_{78}Al_{30}(OH)_{216}30C_6H_5O_3S\!\cdot\!18H_2O$	88.6	94.2	120.2	18.5	18.6	42.1
C6115003	$Zn_{84}Al_{24}(OH)_{216}24C_6H_5O_3S\!\cdot\!18H_2O$	88.7	92.1	120.3	18.6	18.7	42.2
	$Zn_{90}Al_{18}(OH)_{216}18C_6H_5O_3S\!\cdot\!18H_2O$	88.8	91.3	120.3	18.8	18.7	44.0
	$Zn_{96}Al_{12}(OH)_{216}12C_6H_5O_3S\!\cdot\!18H_2O$	89.7	90.3	119.9	18.9	18.8	45.7
	$Zn_{66}Al_{42}(OH)_{216}21CO_3 \cdot 18H_2O$	89.8	90.0	119.9	18.2	18.2	22.1
	Zn ₇₂ Al ₃₆ (OH) ₂₁₆ 18CO ₃ ·18H ₂ O	98.5	84.5	119.9	18.3	18.3	22.2
$C\Omega_2^{2-}$	$Zn_{78}Al_{30}(OH)_{216}15CO_3 \cdot 18H_2O$	89.4	90.8	119.8	18.4	18.4	22.5
603	$Zn_{84}Al_{24}(OH)_{216}12CO_3 \cdot 18H_2O$	88.9	91.0	119.8	18.5	18.5	22.9
	$Zn_{90}Al_{18}(OH)_{216}9CO_3\cdot 18H_2O$	89.0	90.9	119.8	18.6	18.6	22.9
	$Zn_{96}Al_{12}(OH)_{216}6CO_3 \cdot 18H_2O$	89.5	90.4	119.9	18.8	18.8	23.5
	$Zn_{66}Al_{42}(OH)_{216}21SO_4 \cdot 18H_2O$	89.3	90.9	120.0	18.2	18.3	25.7
	$Zn_{72}Al_{36}(OH)_{216}18SO_4 \cdot 18H_2O$	89.5	91.0	119.9	18.4	18.3	25.9
SO_4^{2-}	Zn ₇₈ Al ₃₀ (OH) ₂₁₆ 15SO ₄ ·18H ₂ O	87.7	93.5	119.8	18.5	18.4	26.1
504	Zn ₈₄ Al ₂₄ (OH) ₂₁₆ 12SO ₄ ·18H ₂ O	89.7	90.2	119.9	18.6	18.5	26.6
	$Zn_{90}Al_{18}(OH)_{216}9SO_4{\cdot}18H_2O$	89.8	90.2	119.9	18.7	18.7	26.7
	$Zn_{96}Al_{12}(OH)_{216}6SO_4 \cdot 18H_2O$	90.1	90.0	120.0	18.8	18.8	26.7
PO_4^{3-}	$Zn_{63}Al_{45}(OH)_{216}15PO_4 \cdot 18H_2O$	92.8	86.8	119.8	18.1	18.2	24.7

Zn ₇₂ Al ₃₆ (OH) ₂₁₆ 12PO ₄ ·18H ₂ O	92.1	87.6	119.8	18.3	18.3	24.9
Zn81Al27(OH)2169PO4·18H2O	90.6	89.4	119.9	18.5	18.5	25.3
Zn90Al18(OH)2166PO4·18H2O	90.0	90.0	120.0	18.7	18.7	25.7
Zn ₉₆ Al ₁₂ (OH) ₂₁₆ 4PO ₄ ·18H ₂ O	89.5	90.6	120.0	18.8	18.8	25.4

139 **Table S4.** The lattice parameter *a* of M^{II}_{R} Al-Cl-LDHs and M^{II} (OH)₂ ($M^{II} = Mg$, Ni,

140 Zn) when R>4 after simulation of 200 ps

$D = M^{2+}/A^{13+}$ Lattice parameter $a/Å$								
_	$K = M^2 / Al^3$	Mg _R Al-Cl-LDH	Mg(OH) ₂	Ni _R Al-Cl-LDH	Ni(OH) ₂	Zn _R Al-Cl-LDH	Zn(OH) ₂	
	5	3.08	3 1/1Sl	3.07	3 00 ^{S2}	3.11	3 10 ^{S3}	
_	8	3.10	5.14	3.08	5.09	3.13	5.19	
14	1							
142 142	42 Table S5. Energy composition of $M^{II}_R M^{III}$ -A-LDHs ($M^{II} = Mg$, Ni, Zn; $M^{III} = A1$; <i>R</i> 43 ranges from 1.4 to 8; $A = OH^-$, Cl^- , Br^- , NO_3^- , $HCOO^-$, $C_6H_5SO_3^-$, CO_3^{2-} , SO_4^{2-} , and							
144	44 PO ₄ ³⁻), where E_{tot} , E_a , E_c , $E_{non-bond}$, E_{vdW} , E_e , E_b represents the total potential energy,							
14:	angle term, cross term, non-bond energy, van der waals energy, electrostatic energy							
140	6 and relati	and relative binding energy, respectively						

Madal	A	D	$E_{ m tot}$ /	$E_{ m a}$ /	$E_{ m c}$ /	$E_{\rm non-bond}$ /	$E_{ m vdW}$ /	$E_{ m e}$ /	E_{b} /
Model	Anion	K	kcal·mol ^{−1}	kcal·mol ⁻¹	kcal·mol ⁻¹	kcal·mol ⁻¹	kcal·mol ⁻¹	kcal·mol ^{−1}	kcal·mol ⁻¹
		1.6	-105740.09	-13738.12	-1.00	-95071.22	1242.03	-96313.24	-36.38
		2.0	-105797.81	-13682.79	-1.26	-95340.65	1070.12	-96410.77	-34.21
	OH-	2.6	-106206.06	-13631.48	-3.20	-95900.58	979.64	-96880.22	-28.98
	on	3.5	-106625.78	-13583.88	-2.13	-96459.13	864.62	-97323.75	-13.92
		5.0	-107293.71	-13649.34	-2.44	-97114.37	748.90	-97863.27	-20.58
		8.0	-107983.57	-13653.45	-1.78	-97926.27	632.69	-98558.97	-19.10
		1.6	-105391.72	-13789.86	-1.53	-94681.70	1196.74	-95878.44	-28.53
$M_{\Omega P} \Delta l_{-} \Delta - I DH_{S}$		2.0	-105496.88	-13691.73	-1.74	-94967.06	1011.92	-95978.98	-26.30
WIGRI M-I C-LDIIS	C1-	2.6	-106021.88	-13655.59	-1.71	-95688.42	887.64	-96576.06	-23.28
	CI	3.5	-106480.86	-13643.29	-1.03	-96228.74	727.40	-96956.14	-8.32
		5.0	-107214.48	-13673.20	-1.42	-97008.06	678.51	-97686.57	-16.62
		8.0	-107920.27	-13688.30	-1.72	-97767.38	609.28	-98376.67	-14.26
		1.6	-105105.80	-13839.83	-1.23	-94254.11	1105.16	-95359.27	-21.71
	D	2.0	-105336.28	-13770.06	-1.43	-94753.16	961.33	-95714.49	-21.83
	Бľ	2.6	-105799.71	-13692.44	-1.51	-95381.56	855.83	-96237.39	-15.87
		3.5	-106399.41	-13683.03	-1.23	-96085.80	734.84	-96820.63	-4.92

		5.0	-107080.60	-13694.44	-1.17	-96836.58	635.90	-97472.48	-9.17
		8.0	-107865.77	-13688.78	-1.08	-97684.45	584.11	-98268.57	-9.71
		1.6	-104160.92	-13884.58	-0.37	-93262.89	622.90	-93885.79	0.00
		2.0	-104522.12	-13726.98	-0.21	-93946.06	599.36	-94545.42	0.00
	NO	2.6	-105300.06	-13723.12	-1.66	-94825.11	568.27	-95393.38	0.00
	NO3	3.5	-106262.41	-13647.62	-0.66	-96004.73	550.83	-96555.55	0.00
		5.0	-106901.33	-13711.80	-1.14	-96638.30	556.81	-97195.12	0.00
		8.0	-107739.76	-13708.20	-1.57	-97593.72	542.01	-98135.74	0.00
		1.6	-104680.00	-13892.52	-2.91	-93657.55	830.71	-94488.26	-12.37
		2.0	-105174.01	-13759.86	-2.87	-94511.38	648.88	-95160.26	-18.12
	<u> НСОО-</u>	2.6	-105777.11	-13749.03	-2.51	-95307.64	597.26	-95904.89	-15.91
	ncoo	3.5	-106369.23	-13698.20	-1.55	-96008.39	548.66	-96557.05	-4.46
		5.0	-106988.57	-13659.29	-2.21	-96797.89	518.75	-97316.64	-7.29
		8.0	-107829.21	-13682.51	-0.74	-97705.27	491.39	-98196.65	-7.47
		1.6	-98930.83	-13318.89	-36.54	-88901.15	1125.89	-85133.73	82.85
		2.0	-100086.45	-13550.65	-23.30	-89927.98	663.14	-90591.13	81.54
	C/H/SO)-	2.6	-102564.15	-13300.62	-34.11	-92986.92	839.76	-93826.68	49.52
	0,11,503	3.5	-102877.25	-13233.54	-13.04	-93783.28	817.19	-94600.47	99.37
		5.0	-104994.30	-13531.64	-16.07	-95095.95	644.93	-95740.88	64.27
		8.0	-106752.07	-13686.60	-0.41	-96773.29	628.97	-97402.25	40.63
		1.6	-107651.68	-13487.81	-2.34	-97235.50	1072.31	-98307.81	-42.14
		2.0	-107155.48	-13426.14	-2.94	-96953.06	893.03	-97846.09	-64.36
	$C\Omega^{2-}$	2.6	-107269.68	-13436.73	-2.33	-97180.84	787.02	-97967.87	-49.37
	003	3.5	-107774.79	-13444.76	-3.02	-97341.09	712.54	-98476.73	-44.09
		5.0	-108171.07	-13481.24	-2.46	-98128.26	689.43	-98817.70	-59.14
		8.0	-108588.09	-13556.75	-2.68	-98527.45	618.05	-99145.50	-59.45
		1.6	-106571.61	-13736.43	-1.80	-95833.89	1010.77	-96844.66	-47.90
		2.0	-106592.25	-13635.25	-0.95	-96096.46	892.27	-96988.73	-48.11
	SQ4 ²⁻	2.6	-106839.06	-13626.38	-0.80	-96499.51	800.68	-97300.19	-35.70
	504	3.5	-107273.96	-13643.24	-0.91	-97017.65	739.73	-97757.38	-17.40
		5.0	-107807.23	-13632.73	-1.19	-97626.67	684.54	-98311.21	-33.76
		8.0	-108378.99	-13654.87	-1.21	-98874.86	618.80	-98711.36	-39.64
		1.4	-108197.63	-13270.03	-0.01	-98058.11	1265.16	-99323.27	-421.22
		2.0	-107775.07	-13275.45	-0.03	-97868.87	1040.66	-98909.53	-432.47
	PO_4^{3-}	3.0	-110062.27	-15347.89	-0.07	-98522.53	695.36	-99217.89	-461.57
		5.0	-107937.13	-13387.29	0.00	-98088.01	694.30	-98782.31	-334.03
		8.0	-108445.06	-13575.87	-0.01	-98397.81	578.91	-98976.72	-337.72
		1.6	-99933.62	-15423.49	-1.63	-87393.84	953.71	-88347.56	-36.08
		2.0	-99417.69	-15536.85	-1.69	-86888.80	775.37	-87664.17	-32.08
	OII-	2.6	-99366.20	-15692.88	-2.49	-86735.99	671.53	-87407.51	-22.56
	OH	3.5	-99438.74	-15900.64	-1.06	-86585.64	522.23	-87107.87	-20.87
INIRAI-A-LUHS		5.0	-99467.81	-16077.44	-2.46	-86497.46	440.65	-86938.11	-23.09
		8.0	-99769.95	-16369.20	-1.42	-86519.53	356.50	-86876.02	-21.11
	<u>C1-</u>	1.6	-99541.34	-15472.51	-1.53	-86920.60	859.28	-87779.88	-27.18
	CI	2.0	-99161.07	-15589.80	-2.26	-86508.38	725.80	-87234.18	-25.39

	2.6	-99161.80	-15727.18	-1.63	-86392.71	595.90	-86988.61	-16.19
	3.5	-99270.58	-15906.80	-1.42	-86387.45	492.85	-86880.29	-14.30
	5.0	-99450.42	-16169.18	-1.35	-86421.14	381.75	-86802.89	-20.13
	8.0	-99718.11	-16358.45	-1.40	-86465.37	316.67	-86782.05	-17.23
	1.6	-99232.91	-15488.64	-1.26	-86540.97	847.60	-87388.57	-19.83
	2.0	-99013.62	-15612.49	-1.64	-86280.86	685.52	-86966.38	-21.29
2.6	2.6	-99048.75	-15799.98	-1.11	-86222.04	585.75	-86807.79	-12.42
Br	3.5	-99126.56	-15964.32	-0.88	-86191.33	418.57	-86609.91	-8.30
	5.0	-99375.87	-16143.63	-0.96	-86353.53	360.07	-86713.60	-15.98
	8.0	-99651.84	-16381.17	-1.18	-86406.40	313.28	-86719.68	-11.70
	1.6	-98366.87	-15582.76	-0.67	-85497.94	299.87	-85797.82	0.00
	2.0	-98218.91	-15633.99	-0.89	-85357.84	276.11	-85633.95	0.00
NO ₂ -	2.6	-98652.62	-15828.59	-0.78	-85792.78	244.99	-86037.77	0.00
1103	3.5	-98908.60	-15980.75	-0.95	-85949.60	246.52	-86196.12	0.00
	5.0	-99074.13	-16175.20	-1.52	-86003.29	246.86	-86250.15	0.00
	8.0	-99501.97	-16402.55	-0.38	-86164.98	226.10	-86391.08	0.00
	1.6	-98828.69	-15589.45	-3.38	-85914.53	547.86	-86462.38	-11.01
	2.0	-98859.53	-15662.96	-2.94	-86079.51	357.60	-86437.12	-17.81
	2.6	-99020.36	-15802.16	-2.18	-99020.36	307.30	-86496.18	-12.27
нсоо	3.5	-99045.28	-15990.96	-2.62	-86105.87	265.22	-86371.09	-16.37
	5.0	-99339.09	-16181.92	-1.48	-86271.04	224.12	-86495.16	-14.73
	8.0	-99675.14	-16386.87	-1.13	-86380.22	203.51	-86583.73	-14.44
	1.6	-92317.73	-15276.92	-39.15	-79557.30	724.72	-80282.02	102.35
	2.0	-93293.16	-15211.07	-38.14	-81209.10	533.97	-81743.06	95.15
CHISO	2.6	-95028.92	-15483.31	-13.52	-82876.19	358.62	-83234.81	58.98
C6115503	3.5	-96142.59	-15700.16	-10.24	-83730.94	270.76	-84001.69	50.53
	5.0	-97339.84	-15978.50	-0.38	-84759.05	374.69	-85133.73	30.59
	8.0	-98649.85	-16390.54	-7.08	-85420.29	312.71	-85733.00	29.34
	1.6	-101843.29	-15184.17	-2.61	-89549.48	756.50	-90305.98	-83.60
	2.0	-101157.78	-15317.67	-2.54	-88831.24	656.27	-89487.51	-81.33
$C\Omega^{2-}$	2.6	-101140.79	-15527.75	-3.03	-88245.82	565.57	-88811.39	-24.48
003	3.5	-100589.09	-15717.20	-2.27	-87896.46	471.66	-88368.12	-29.05
	5.0	-100462.81	-15950.87	-2.13	-87318.04	400.51	-87954.01	-36.18
	8.0	-100165.57	-16222.74	-2.60	-87115.69	268.87	-87384.56	-28.66
	1.6	-100717.87	-15184.17	-2.61	-88099.88	724.16	-88824.05	-45.06
	2.0	-100144.65	-15317.67	-2.54	-87562.89	585.65	-88148.55	-40.09
SO^{2-}	2.6	-100059.08	-15527.75	-3.03	-87342.94	512.87	-87855.81	-26.87
304	3.5	-100050.72	-15717.20	-2.27	-87176.60	458.99	-87635.59	-28.28
	5.0	-100080.33	-15950.87	-2.13	-87017.19	411.88	-87429.06	-44.90
	8.0	-100337.48	-16222.74	-2.60	-86894.41	343.15	-87237.56	-25.90
	1.4	-102530.09	-14835.31	-0.07	-90690.40	1024.15	-91714.55	-429.65
	2.0	-101407.90	-15154.17	-0.01	-89338.40	732.70	-90071.09	-427.14
PO4 ³⁻	3.0	-100595.30	-15482.20	-0.05	-88255.72	547.56	-88803.29	-392.73
	5.0	-100347.05	-15899.30	0.00	-87551.89	405.34	-87957.23	-373.55
	8.0	-100391.98	-16301.38	-0.01	-87188.56	286.39	-87474.95	-383.90

		1.6	-121353.35	-13562.34	-1.97	-111358.10	1024.44	-112382.55	-38.19
		2.0	-122878.25	-13541.01	-1.21	-113063.52	807.45	-113870.97	-33.68
	<u>О</u> Ш-	2.6	-124690.39	-13599.72	-2.81	-114990.44	666.73	-115657.17	-24.74
	OII	3.5	-126697.39	-13669.66	-1.22	-116970.48	546.19	-117516.67	-28.39
		5.0	-128681.47	-13800.45	-0.82	-118988.86	424.93	-119413.79	-12.76
		8.0	-131061.45	-13944.86	-0.90	-121346.83	356.17	-121703.00	-15.35
		1.6	-120889.06	-13609.17	-1.97	-110786.63	884.59	-111671.22	-27.58
		2.0	-122517.54	-13588.20	-1.03	-112666.94	688.56	-113355.50	-24.11
	C1-	2.6	-124430.21	-13626.88	-1.42	-114644.24	557.17	-115201.42	-16.52
	CI	3.5	-126542.75	-13694.65	-0.92	-116848.45	465.33	-117313.78	-22.39
		5.0	-128699.48	-13837.61	-1.48	-118945.54	393.89	-119339.43	-14.20
		8.0	-131035.58	-13954.08	-2.30	-121706.36	343.68	-121706.36	-13.64
		1.6	-120551.72	-13656.24	-1.49	-110360.24	861.59	-111221.82	-19.54
		2.0	-122278.50	-13593.03	-0.73	-122278.50	711.28	-113064.50	-17.46
	D	2.6	-124264.43	-13653.10	-0.79	-114384.60	561.02	-114945.61	-10.98
	Br	3.5	-126444.98	-13729.60	-1.24	-116683.91	475.99	-117159.90	-18.31
		5.0	-128569.96	-13844.10	-1.10	-118847.62	369.57	-119217.19	-7.00
		8.0	-130991.42	-13975.44	-1.35	-121258.64	335.04	-121593.68	-9.95
		1.6	-119698.13	-13675.03	-0.90	-109443.79	370.92	-109814.71	0.00
		2.0	-121621.66	-13653.08	-0.67	-111545.40	305.11	-111850.52	0.00
	NO -	2.6	-123911.39	-13713.42	-0.68	-113945.85	292.79	-114238.64	0.00
	NO ₃	3.5	-125986.63	-13786.78	-0.72	-116206.24	249.97	-116456.21	0.00
Zn _P Al-A-LDHs	2	5.0	-128429.81	-13904.59	-1.17	-118595.44	282.88	-118878.33	0.00
	,	8.0	-130862.58	-13995.71	-0.37	-121108.40	240.31	-121348.71	0.00
		1.6	-120255.56	-13746.46	-3.10	-109861.16	572.03	-110433.18	-13.28
		2.0	-122210.61	-13669.83	-2.26	-112135.15	393.31	-112528.46	-16.37
		2.6	-124304.26	-13705.77	-2.39	-114348.58	336.43	-114685.02	-13.11
	HCOO-	3.5	-126332.88	-13753.17	-2.43	-116483.46	300.22	-116783.68	-14.44
		5.0	-128560.65	-13841.15	-1.39	-118896.84	257.02	-119153.86	-7.28
		8.0	-130960.44	-13952.43	-1.26	-121288.87	238.42	-121527.29	-8.17
		1.6	-113931.01	-13614.17	-58.00	-103765.16	650.78	-104415.94	95.64
		2.0	-116732 12	-13552 71	-41 69	-108587.00	587 67	-109174 67	94 15
		2.0	-119699 39	-13539.79	-16.60	-110928.93	546.05	-111474 97	98.73
	$C_6H_5SO_3^-$	3.5	-123241 32	-13471 51	-41 64	-114320.80	363.13	-114683 92	72 71
		5.0	-126330.67	-13563.29	-11.25	-117272.75	402.41	-117675.16	74 94
		8.0	-129636.20	-9405 36	-22.62	-120230.84	341.68	-12057252	60.52
		1.6	123099.69	13333 82	1 /0	113355 87	800.18	114156.04	80.04
		2.0	124445.69	12211.02	1.52	114992 90	662 70	115547 50	74.05
		2.0	-124445.08	-13311.93	-1.33	-114883.80	003.70 504.45	-115547.50	-/4.93
	CO_{3}^{2-}	2.0	-123/04.00	-13339.79	-5.08	-110288.80	304.43 424.60	-110/93.23	-41.01
		5.5 5.0	-12/443.23	-13438.0/	-3.20	-11800/.//	424.09	-110432.40	-39.01
		5.U 8.0	-129390.1/	-13380.38	-2.03	-120043.98	3/1.1/	-120400.90	-4/.03 51 10
		0.0	-131001.30	-13619.13	-1.98	-1220/8.31	309.08	-122448.19	-31.18
		1.6	-122018.01	-13538.77	-1.39	-111938.70	/33./5	-1126/2.45	-43.57
	SO4 ²⁻	2.0	-123541.05	-13511.71	-1.09	-113701.20	592.17	-114293.38	-39.74
		2.6	-125317.55	-13563.57	-1.13	-115582.71	513.74	-116096.45	-26.85

	3.5	-127231.80	-13693.86	-0.61	-117528.07	466.34	-117994.41	-36.87
	5.0	-129307.00	-13769.63	-0.74	-119602.64	420.33	-120022.97	-30.57
	8.0	-131409.76	-13918.13	-1.04	-121717.70	347.96	-122065.66	-24.30
	1.4	-122916.40	-13035.91	-0.01	-113483.29	983.59	-114466.88	-366.65
	2.0	-124659.80	-13012.33	0.00	-115379.93	756.44	-116136.38	-414.57
PO4 ³⁻	3.0	-126669.01	-13171.50	0.24	-117451.65	573.76	-118025.41	-421.34
	5.0	-129366.77	-13527.42	0.00	-119982.61	412.81	-120395.42	-317.55
	8.0	-131329.84	-13823.28	-0.01	-121757.30	283.27	-122040.57	-92.74

149 *Calculation of Gibbs free energy*^{\$4,\$5}

150 The Gibbs free energy (G) can be obtained by Eq 1:

$$151 \qquad G = H - TS \tag{1}$$

152 Where H is enthalpy, T is the temperature of the system and S is entropy.

153 For solids, entropy and enthalpy are almost independent of pressure. *H* and *S* can be

154 calculated by Eqs 2 and 3:

155
$$H(T) = E_{elec} + E_{ZPE} + E_{vib}(T)$$
 (2)

156
$$S(T) = S_{\text{conf}} + S_{\text{vib}}(T)$$
(3)

where E_{elec} is the total electronic energy at 0 K, E_{ZPE} is zero-point energy, $E_{vib}(T)$ is the vibration term, S_{conf} and $S_{vib}(T)$ are the configurational and vibrational entropy, respectively.

160 So, Eq (1) can be expressed as:

161
$$G = E_{\text{elec}} + E_{\text{ZPE}} + E_{\text{vib}}(T) - TS$$
(4)

According to statistical mechanics, the vibrational partition function can beobtained from Eq 5:

164
$$q_{\rm vib} = \sum_{i} \frac{1}{1 - \exp(-hv_i / kT)}$$
 (5)

165 Thus the E_{ZPE} and E_{vib} at the temperature T can be caculated by Eqs 6 and 7:

166
$$E_{\text{ZPE}} = \frac{R}{k} \frac{1}{2} \sum_{i} h v_i$$
 (6)

167
$$E_{\rm vib} = \frac{R}{k} \sum_{i} \frac{h v_i \exp(-h v_i / kT)}{1 - \exp(-h v_i / kT)}$$
(7)

where k is Boltzmann's constant, R is the ideal gas constant, v_i is the *i*-th normal vibration frequency, h is Planck's constant.

170 S_{conf} and $S_{\text{vib}}(T)$ can be obtained by Eqs 8 and 9:

171
$$S_{\text{conf}} = -RN_{\text{T}}(X_{\text{A}}\ln X_{\text{A}} + X_{\text{W}}\ln X_{\text{W}} + X_{\text{V}}\ln X_{\text{V}})$$
 (8)

172
$$S_{\rm vib}(T) = R \sum_{i} \frac{hv_i / kT \exp(-hv_i / kT)}{1 - \exp(-hv_i / kT)} - R \sum_{i} \ln[1 - \exp(-hv_i / kT)]$$
(9)

where $N_{\rm T}$ is the total moles of mixing species, and $X_{\rm A}$, $X_{\rm W}$, and $X_{\rm V}$ are the mole fraction of anion, water molecule, and vacancy, respectively.

For solid, E_{vib} and S_{conf} are significantly smaller than E_{elec} and S_{vib} , respectively, they can be neglected in the calculation of *G*, Eq 4 can be expressed as

177
$$G = E_{\text{elec}} + E_{\text{ZPE}} - TS \tag{10}$$

178 **Table S6.** Gibbs free energies of $M^{II}_{2}Al-A-LDHs$ ($M^{II}=Mg$, Ni, Zn; $A = OH^{-}$, Cl^{-} , Br^{-} ,

179 NO₃⁻, HCOO⁻, C₆H₅SO₃⁻, CO₃²⁻, SO₄²⁻, and PO₄³⁻), along with those of the

180 Mg₂Al-A-LDH with correction for non-covalent interaction (Mg₂Al-A-LDH-1)

٨	$G / m kcal \cdot mol^{-1}$							
А	Mg ₂ Al-A-LDH	Mg ₂ Al-A-LDH-1	Ni ₂ Al-A-LDH	Zn ₂ Al-A-LDH				
NO ₃ -	-1729043.99	-1729110.91	-1656114.65	-1797069.72				
HCOO-	-1614671.87	-1614749.17	-1541754.71	-1682685.33				
Br-	-1394273.04	-1394344.25	-1321339.88	-1462277.91				
Cl-	-1954822.32	-1954891.99	-1881888.02	-2022827.82				

OH-	-1472456.23	-1472514.72	-1399527.75	-1540438.15
SO_4^{2-}	-1815920.35	-1815985.92	-1742989.73	-1883933.81
CO3 ²⁻	-1542866.61	-1542930.52	-1469939.19	-1610863.89
PO4 ³⁻	-2469004.08	-2469090.21	-2359622.03	-1610863.89
$C_6H_5SO_3^-$	-2450115.79	-2450229.69	-2377464.91	-2518407.12

Table S7. Free energy change of anion-exchange reaction of Ni₂Al-A-LDHs

anion-exchange reaction	$\Delta G / \text{kcal·mol}^{-1}$
$Ni_{4}Al_{2}(OH)_{12}(NO_{3})_{2} + 2C_{6}H_{5}SO_{3}^{-} = Ni_{4}Al_{2}(OH)_{12}(C_{6}H_{5}SO_{3})_{2} + 2NO_{3}^{-}$	42.60
$Ni_4Al_2(OH)_{12}(NO_3)_2 + 2HCOO^- = Ni_4Al_2(OH)_{12}(HCOO)_2 + 2NO_3^-$	-27.94
$Ni_4Al_2(OH)_{12}(NO_3)_2 + 2Br^- = Ni_4Al_2(OH)_{12}(Br)_2 + 2NO_3^-$	-38.61
$Ni_4Al_2(OH)_{12}(NO_3)_2 + 2Cl^- = Ni_4Al_2(OH)_{12}(Cl)_2 + 2NO_3^-$	-39.30
$Ni_4Al_2(OH)_{12}(NO_3)_2 + 2OH^- = Ni_4Al_2(OH)_{12}(OH)_2 + 2NO_3^-$	-82.39
$Ni_4Al_2(OH)_{12}(NO_3)_2 + SO_4^{2-} = Ni_4Al_2(OH)_{12}(SO_4) + 2NO_3^{-}$	-82.66
$Ni_4Al_2(OH)_{12}(NO_3)_2 + CO_3^{2-} = Ni_4Al_2(OH)_{12}(CO_3) + 2NO_3^{-}$	-195.39
$3Ni_4Al_2(OH)_{12}(NO_3)_2 + 2PO_4^{3-} = 2Ni_6Al_3(OH)_{18}(PO_4) + 6NO_3^{-}$	-633.16

Table S8. Free energy change of anion-exchange reaction of Zn₂Al-A-LDHs

anion-exchange reaction	ΔG / kcal·mol ⁻¹
$Zn_4Al_2(OH)_{12}(NO_3)_2 + 2C_6H_5SO_3^- = Zn_4Al_2(OH)_{12}(C_6H_5SO_3)_2 + 2NO_3^-$	55.47
$Zn_4Al_2(OH)_{12}(NO_3)_2 + 2HCOO^- = Zn_4Al_2(OH)_{12}(HCOO)_2 + 2NO_3^-$	-3.497
$Zn_4Al_2(OH)_{12}(NO_3)_2 + 2Br^- = Zn_4Al_2(OH)_{12}(Br)_2 + 2NO_3^-$	-21.57
$Zn_4Al_2(OH)_{12}(NO_3)_2 + 2Cl^- = Zn_4Al_2(OH)_{12}(Cl)_2 + 2NO_3^-$	-24.03
$Zn_4Al_2(OH)_{12}(NO_3)_2 + 2OH^- = Zn_4Al_2(OH)_{12}(OH)_2 + 2NO_3^-$	-37.73
$Zn_4Al_2(OH)_{12}(NO_3)_2 + SO_4^{2-} = Zn_4Al_2(OH)_{12}(SO_4) + 2NO_3^{-}$	-71.68
$Zn_4Al_2(OH)_{12}(NO_3)_2 + CO_3^{2-} = Zn_4Al_2(OH)_{12}(CO_3) + 2NO_3^{-}$	-165.01
$3Zn_4Al_2(OH)_{12}(NO_3)_2 + 2PO_4^{3-} = 2Zn_6Al_3(OH)_{18}(PO_4) + 6NO_3^{-}$	-563.59

Table S9. Free energy change of anion-exchange reaction of Mg₂Al-A-LDHs with

187 correction for non-covalent interaction

anion-exchange reaction	$\Delta G / ext{kcal·mol}^{-1}$
$Mg_{4}Al_{2}(OH)_{12}(NO_{3})_{2} + 2C_{6}H_{5}SO_{3}^{-} = Mg_{4}Al_{2}(OH)_{12}(C_{6}H_{5}SO_{3})_{2} + 2NO_{3}^{-}$	274.09
$Mg_4Al_2(OH)_{12}(NO_3)_2 + 2HCOO^- = Mg_4Al_2(OH)_{12}(HCOO)_2 + 2NO_3^-$	-26.14

$Mg_4Al_2(OH)_{12}(NO_3)_2 + 2Br^- = Mg_4Al_2(OH)_{12}(Br)_2 + 2NO_3^-$	-46.72
$Mg_4Al_2(OH)_{12}(NO_3)_2 + 2Cl^- = Mg_4Al_2(OH)_{12}(Cl)_2 + 2NO_3^-$	-47.01
$Mg_4Al_2(OH)_{12}(NO_3)_2 + 2OH^- = Mg_4Al_2(OH)_{12}(OH)_2 + 2NO_3^-$	-73.11
$Mg_4Al_2(OH)_{12}(NO_3)_2 + SO_4^{2-} = Mg_4Al_2(OH)_{12}(SO_4) + 2NO_3^{-}$	-82.60
$Mg_4Al_2(OH)_{12}(NO_3)_2 + CO_3^{2-} = Mg_4Al_2(OH)_{12}(CO_3) + 2NO_3^{-}$	-190.40
$3Mg_4Al_2(OH)_{12}(NO_3)_2 + 2PO_4^{3-} = 2Mg_6Al_3(OH)_{18}(PO_4) + 6NO_3^{-}$	-580.70

189 **Table S10.** The calculated Mulliken charge (q) of the anion when it is introduced into

190 M_2 Al-A-LDHs (M^{II}=Mg, Ni, Zn) and the charge transfers

	PO4 ³⁻		CO3 ²⁻		SO4 ²⁻		OH-		Cl-		Br-		HCOO-		NO ₃ -	
	q	Δq	q	Δq	q	Δq	q	Δq	q	Δq	q	Δq	q	Δq	q	Δq
M ^{II} =Mg	-1.815	1.185	-1.372	0.628	-1.495	0.505	-0.502	0.498	-0.61	0.390	-0.649	0.531	-0.732	0.268	-0.778	0.222
M ^{II} =Ni	-1.748	1.252	-1.334	0.666	-1.458	8 0.542	-0.588	0.412	-0.619	0.381	-0.627	0.373	-0.717	0.283	-0.759	0.241
M ^{II} =Zn	-1.765	1.235	-1.37	0.685	-1.442	2 0.558	-0.516	0.484	-0.557	0.443	-0.619	0.381	-0.717	0.283	-0.771	0.229
191																

192 Table S11. The frontier orbital energies, ionization potential, electron affinity and

193 electronegativity of anions

194

	HOMO /eV	I/eV	LUMO /eV	A /eV	χ
PO4 ³⁻	0.472	-0.472	0.78	-0.78	-0.626
CO3 ²⁻	0.344	-0.344	0.54	-0.54	-0.442
SO_4^{2-}	0.232	-0.232	0.538	-0.538	-0.385
OH-	0.191	-0.191	0.392	-0.392	-0.2915
Cl-	0.083	-0.083	0.699	-0.699	-0.391
Br-	0.082	-0.082	0.616	-0.616	-0.349
HCOO-	0.056	-0.056	0.260	-0.26	-0.158
NO_3^-	0.046	-0.046	0.173	-0.173	-0.1095

195

196 **References**

197 (S1) M. Catti, G. Ferraris, S. Hull and A. Pavese, Phys. Chem. Minerals., 1995, 22,

- 198 200–206.
- 199 (S2) M. Rajamathi and P. V. Kamath, J. Power Sources, 1998, 70, 118–121.
- 200 (S3) H. Yan, M. Wei, J. Ma and Duan X. Particuology, 2010, 8, 212–220.

- 201 (S4) D. G. Costa, A. B. Rocha, W. F. Souza, S. S. X. Chiar and A. A. Leitão, J. Phys.
- 202 *Chem. B*, 2011, **115**, 3531–3537.
- 203 (S5) R. K. Allada, A. Navrotsky and J. Boerio-Goates, Am. Mineral., 2005, 90,
- 204 329–335.
- 205