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1 Derivation of equation (8)

Denote the numbers of molecules of components 1 (water), 2 (hydrophilic organic), and 3 (hydropho-

bic organic) in an AHHO aerosol by ν1, ν2, and ν3, respectively, and the number of radicals RO

•
(component 4) in the aerosol by ν4; for the sake of simplicity and uniformity, radicals RO

•
will

be sometimes referred to as “molecules of component 4”. Since components 2 and 4 are mostly

hydrophilic, they are assumed to be distributed more or less uniformly within the aerosol, while

molecules of component 3 will be located mostly on the aerosol surface (although their dissolution

within the aerosol core can not be excluded).

Choosing ν1, ν2, ν3, and ν4 as the independent variables of state of a single aerosol, consider an

ensemble of AHHO aerosols in the air and denote their distribution function with respect to ν1, ν2, ν3,

and ν4 at time t by g(ν1, ν2, ν3, ν4, t). Let us construct a discrete balance equation governing the

temporal evolution of g(ν1, ν2, ν3, ν4, t). Depending on the convenience, any function f of variables

ν1, ν2, ν3, ν4 can be denoted either f(ν1, ν2, ν3, ν4) or f({ν}) or f(νi, ν̃i), where {ν} would denote

either the aerosol itself or, as a function argument, all four independent variables of state of the

aerosol, ν1, ν2, ν3, ν4, whereas the “complementary” variable ν̃i would represents only three of them,
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the “excluded” variable being νi (the total number of molecules in the aerosol will be denoted by

ν = ν1 + .. + ν4). In this notation, e.g., g({ν}, t) = g(νi, ν̃i, t) = g(ν1, ν2, ν3, ν4, t)

As usual in CNT, let us first assume that the metastability of vapor mixture in the air is created

instantaneously and does not change during the whole nucleation process; this assumption can be

subsequently removed and the kinetic theory properly modified for application to more complicated

(and more realistic) environmental conditions. The temperature T of the air parcel and the number

densities of non-condensible gas molecules are also fixed. Aerosols during the nucleation stage are so

small that the characteristic times of their internal relaxation processes are very small in comparison

with the time between two of its successive interactions with the air, and the interactions them-

selves take place under a free-molecular regime. Thus, one can assume that the aerosol attains its

internal thermodynamical equilibrium before each successive interaction with air, so that the aerosol

temperature can be also assumed to be equal to T .

The material exchange between an aerosol and air occurs via the following elementary interac-

tions:

(a123) absorption of a molecule of component 1 or 2 or 3 from the air into the aerosol {ν} with the

rate W+

i = W+

i ({ν});

(e123) emission of a molecule of component 1 or 2 or 3 from the aerosol {ν} into the air with the

rate W−
i = W−

i ({ν});

(f4) production of a “molecule” of component 4 (radical RO
•
) via the forward sequence of hetero-

geneous chemical reactions (1)-(3) on the surface of aerosol {ν}, with the aggregate rate W+

4
=

W+
4

({ν});

(b4) destruction of a “molecule” of component 4 (radical RO
•
) via the backward sequence of het-

erogeneous chemical reactions (1)-(3) on the surface of aerosol {ν}, with the aggregate rate W−
4

=

W−
4

({ν});
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Therefore, the temporal evolution of the distribution function g(ν1, ν2, ν3, ν4, t) can be described

by the discrete balance equation

∂g(ν1, ν2, ν3, ν4, t))

∂t
= D1 + D2 + D3 + D4, (S1)

where

D1 = W+
1

(ν1 − 1, ν2, ν3, ν4)g(ν1 − 1, ν2, ν3, ν4, t) − W+
1

(ν1, ν2, ν3, ν4)g(ν1, ν2, ν3, ν4, t) +

+W−
1

(ν1 + 1, ν2, ν3, ν4)g(ν1 + 1, ν2, ν3, ν4, t) − W−
1

(ν1, ν2, ν3, ν4)g(ν1, ν2, ν3, ν4, t), (S2)

D2 = W+

2
(ν1, ν2 − 1, ν3, ν4)g(ν1, ν2 − 1, ν3, ν4, t) − W+

2
(ν1, ν2, ν3, ν4)g(ν1, ν2, ν3, ν4, t) +

+W−
2

(ν1, ν2 + 1, ν3, ν4)g(ν1, ν2 + 1, ν3, ν4, t) − W−
2

(ν1, ν2, ν3, ν4)g(ν1, ν2, ν3, ν4, t), (S3)

D3 = W+
3

(ν1, ν2, ν3 − 1)g(ν1, ν2, ν3 − 1, ν4, t) − W+
3

(ν1, ν2, ν3, ν4)g(ν1, ν2, ν3, ν4, t) +

+W−
3

(ν1, ν2, ν3 + 1, ν4)g(ν1, ν2, ν3 + 1, ν4, t) − W−
3

(ν1, ν2, ν3, ν4)g(ν1, ν2, ν3, ν4, t), (S4)

D4 = W+
4

(ν1, ν2, ν3 + 1, ν4 − 1)g(ν1, ν2, ν3 + 1, ν4 − 1, t) − W+
4

(ν1, ν2, ν3, ν4)g(ν1, ν2, ν3, ν4, t) +

+W−
4

(ν1, ν2, ν3 − 1, ν4 + 1)g(ν1, ν2, ν3 − 1, ν4 + 1, t) − W−
4

(ν1, ν2, ν3, ν4)g(ν1, ν2, ν3, ν4, t), (S5)

Note that these equations assume the evolution of aerosols to occur through the absorption from

and emission into the vapor of single molecules of components 1, 2, and 3 (i.e., multimer absorption

and emission are neglected), as well as through the single sequences (1)-(3) of forward and backward

reactions whereby a radical RO
•

is either formed or destroyed.

The terms D1,D2, and D3 on the RHS of eq.(S1) represent the contributions to ∂g({ν}, t)/∂t

from the material exchange events of type (a123) and (b123), whereas the term D4 represents the

contributions to ∂g({ν}, t)/∂t from the elementary events of type (f4) and (b4). Furthermore, on

the RHS of the each of eqs.(S2)-(S4) the first two terms represent the contributions to ∂g({ν}, t)/∂t
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from the absorption events (a123) of air molecules by aerosols, whereas the third and forth terms

therein are due to the emission of molecules from aerosols into the air. On the RHS of eq.(S5), the

first two terms represent the contributions to ∂g({ν}, t)/∂t from the forward sequences (1)-(3) of

chemical reactions on aerosols (whereby radicals RO
•

are produced), whereas the third and fourth

terms therein are due to the backward sequences (1)-(3) (whereby radicals RO
•

are destroyed). As

clear from eq.(S5) and in consistency with the sequence of chemical reactions (1)-(3), the change of

the aerosol distribution due to the variable ν4 is always accompanied by its change with respect to

the variable ν3, while the latter can also change independently due to the direct material exchange

between aerosols and air.

In the space of variables ν1, .., ν4, let us introduce the flux of aerosols along the axis νi (i = 1, 2, 3)

at time moment t as

Ji({ν}, t) = W+

i (νi − 1, ν̃i)g(νi − 1, ν̃i, t) − W−
i ({ν})g({ν}, t) (i = 1, 2, 3), (S6)

and the flux of aerosols along the axis ν4 as

J4({ν}, t) = W+
4

(ν1, ν2, ν3 + 1, ν4 − 1)g(ν1, ν2, ν3 + 1, ν4 − 1) − W−
4

({ν})g({ν}, t). (S7)

Taking these definitions into account, one can rewrite equations (S1)-(S5) as

∂g({ν}, t))

∂t
= −

3∑

i=1

[Ji(νi + 1, ν̃i, t) − Ji({ν}, t)] − [J4(ν1, ν2, ν3 − 1, ν4 + 1, t) − J4({ν}, t)], (S8)

In CNT, the expressions for the absorption rates W+

i (ν1, ν2, ν3, ν4) (i = 1, 2, 3) are provided by

the gas-kinetic theory, as

W+

i ({ν}) =
1

4
αinivTiS({ν}) (i = 1, 2, 3), (S9)

where αi, ni, vTi (i = 1, 2, 3) are the sticking coefficient, number density, and mean thermal

velocity, respectively, of molecules of component i, and S({ν}) is the surface area of the aerosol. The
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emission rates W−
i ({ν}) (i = 1, 2, 3) are determined through the corresponding W+

i ({ν}) on the

basis of the principle of detailed balance.23−25 According to the requirement of this principle, for the

equilibrium distribution function ge({ν}) not only the entire RHS of eq.(S8) is equal to 0, but every

equilibrium flux J e

i ≡ J e

i ({ν}) must be equal to 0.

Applying this principle to the flux J e

i (i = 1, 2, 3) and taking into account that ge({ν}) =

Nf exp[−F ({ν})], where Nf is the normalization factor and F ({ν}) is the free energy of formation

of an aerosol {ν} in thermal units kBT , we have

W−
i ({ν}) = W+

i (νi − 1, ν̃i) exp [− (F (νi − 1, ν̃i) − F ({ν}))] (i = 1, 2, 3). (S10)

In the near-critical region (i.e., vicinity of the “saddle point” of the 5D free-energy surface determined

by the function F = F ({ν})), aerosols are large enough, νi ≫ 1 (i = 1, .., 4), one can use conventional

for CNT approximations

W+

i (νi − 1, ν̃i) ≈ W+

i ({ν}), F (νi − 1, ν̃i) ≈ F ({ν}) − F ′
i ({ν}). (S11)

F ′
i ({ν}) = ∂F ({ν})/∂νi (i = 1, .., 4) Expanding the exponential in eq.(S10) in Taylor series and

neglecting terms of the order of 1/ν2 and smaller therein, we obtain

W−
i ({ν}) ≈ W+

i ({ν})[1 + F ′
i ({ν})] (i = 1, 2, 3). (S12)

Note that this approximation is valid only for large enough aerosols ν ≫ 1 in the near-critical region.

Applying the principle of detailed balance to the flux J e

4 and using similar considerations, one can

obtain one can obtain an interesting approximate relationship between the aggregate rates of forward

and backward sequence of heterogeneous chemical reactions (1)-(3):

W−
4

({ν}) ≈ W+
4

({ν})[1 − (F ′
3({ν}) − F ′

4({ν}))], (S13)

This relationship between aggregate forward and backward reaction rates of sequence (1)-(3) can

be also used to obtain a relationship between the corresponding reaction rate constants; such a
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relationship would depend on whether the heterogeneous reactions in sequence (1)-(3) occur via the

Langmuir-Hinshelwood mechanism (reactions between species chemisorbed on the surface) or via the

Rideal-Eley one (when a chemisorbed species reacts with a fluid-phase species).

In order to obtain eq.(8) from eq.(S8), let us first expand the fluxes Ji (i = 1, .., 4) on the RHS

of eq.(S8) in Taylor series (in deviations of νi ± 1 from νi):

Ji(νi + 1, ν̃i, t) ≃ Ji({ν}, t) +
∂Ji({ν}, t)

∂νi
(i = 1, 2, 3), (S14)

J4(ν1, ν2, ν3 − 1, ν4 + 1, t) ≃ J4({ν}, t) −
∂J4({ν}, t)

∂ν3

+
∂J4({ν}, t)

∂ν4

, (S15)

Here, it is taken into account that nucleating aerosols (in the near-critical region) are large enough

so that νi ≫ 1 (i = 1, .., 4) and the terms with the second and higher order derivatives with respect

to νi (i = 1, .., 4) in the Taylor series expansions can be neglected, as usual in CNT.23−25

Next, with the same degree of accuracy, one can obtain the Taylor series expansions (in deviations

of νi ± 1 from νi) of the distribution functions g({ν}, t) on the RHSs of eqs.(S6),(S7):

g(νi − 1, ν̃i, t) ≃ g({ν}, t) −
∂g({ν}, t)

∂νi
(i = 1, 2, 3), (S16)

g(ν1, ν2, ν3 + 1, ν4 − 1, t) ≃ g({ν}, t) +
∂g({ν}, t)

∂ν3

−
∂g({ν}, t)

∂ν4

. (S17)

Finally, according to the definition of the near-critical region, the width of the region is much

smaller than the size of the critical aerosol, i.e., (νi − νic)/νc ≪ 1 in the near-critical region.

Therefore, according to eq.(S9), one can assume that with a high degree of accuracy in that re-

gion W+

i ({ν}) ≈ W+

ic (subscript “c” marks quantity for the nucleus (critical aerosol). Taking this

into account, substituting eqs.(S14)-(S17) into the RHS of eqs.(S6)-(S8) and combining together
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appropriate terms, one can obtain

∂g({ν}, t)

∂t
=

4∑

i=1

W+

ic

∂

∂νi

(
F ′

i ({ν}) +
∂

∂νi

)
g({ν}, t))

+ W+
4c

[
∂

∂ν3

(
F ′

3({ν}) +
∂

∂ν3

)
(S18)

−
∂

∂ν3

(
F ′

4({ν}) +
∂

∂ν4

)
−

∂

∂ν4

(
F ′

3({ν}) +
∂

∂ν3

)]
g({ν}, t)),

This is the kinetic equation of concurrent multicomponent nucleation and chemical aging of an

ensemble of model organic aerosols. Its derivation via the Taylor series expansions in the vicinity of

the saddle point (involving approximations (S11)-(S17)) and approximation (9) (of the main text)

therein require that not only νic ≫ 1 (i = 1, .., 4), but also δνic ≫ 1 and δνic/νic ≪ 1, where

δνic ≡ |aii|
−1/2 is the half-width of the saddle point vicinity along the νi-axis [18,19]. Note that the

second term on the RHS of eq.(S18) arises because any sequence of reactions (1)-(3) results in the

change of not only ν4, but also ν3; the latter also changes independently via the direct exchange of

component 3 between aerosol and air.

By definition of the near-critical region, F ({ν}) can be approximated there as a bilinear form

F ({ν}) = Fc +
1

2

4∑

i=1

F ′′
ijc(νi − νic)(νj − νjc) = Fc + ∆νT

A∆ν, (S19)

where F ′′
ij = ∂2F/∂νi∂νj (i = 1, .., 4) and the matrix notation was introduced with a real symmetric

4 × 4-matrix A = [aij ] ≡ [1
2
F ′′

ijc] (i, j = 1, .., 4) and a real column-vector of length 4 ∆ν =

[∆νi] ≡ [νi − νic] (i = 1, .., 4); superscript “T” marks the transpose of a matrix/vector. In this

approximation, the first derivatives F ′
i ({ν}) (i = 1, .., 4) are linear superpositions of deviations

∆νi (i = 1, .., 4). Thus, the accuracy of eq.(S18) combined with eq.(S19) corresponds to the Fokker-

Planck approximation, widely used in the kinetics of the first-order phase transitions.23−27,39

Equation (S18) must be solved subject to appropriate boundary conditions. In the framework

of CNT, the latter are formulated22−27,39 by using the equilibrium distribution ge({ν}). In the
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near-critical region, ge({ν}) can be written as36,41

ge(ν) = (1/wc) exp

[
−Fc −

1

2

4∑

i=1

F ′′
ijc∆νi∆νj

]
, (S20)

where wc is the volume per molecule in the saddle point aerosol (nucleus). As clear, the variables

ν1, .., ν4 are not separated in the equilibrium distribution (nor in the kinetic equation (S18)). Hence,

they are not convenient to formulate simple enough boundary conditions to the kinetic equation

(S18).

The problem can be overcome by using an elegant method of complete separation of variables

developed by Kuni and co-workers.26.27 Its most general presentation can be found in Ref.26.

First, it is necessary to introduce such new variables (instead of ν1, .., ν4) that would transform

the bilinear form in eq.(S19) into a quadratic one, without cross terms. Let us denote a set of such

variables by {x} = (x1, .., x4) and the corresponding column-vector by x = [xi] (i = 1, .., 4).

According to the spectral theorem,38 matrix A is orthogonally diagonalizable because it is real

and symmetric. Hence, there exists a real orthogonal 4×4-matrix P ≡ [pij] (i, j = 1, .., 4), such that

P
T
AP = D, (S21)

where the columns of the matrix P are 4 linearly independent orthonormal eigenvectors of A, and

the diagonal elements of the diagonal matrix D are the corresponding eigenvalues φ1, .., φ4 of A.

Under conditions when a multicomponent first-order phase transition occurs via nucleation, the

corresponding free energy surface has a shape of a hyperbolic paraboloid (“saddle” shape in three

dimensions). Therefore, one of the eigenvalues of matrix A is negative while all others are positive,

so that det(A) < 0. Denoting the negative eigenvalue by φ1, one can thus define the variables

xi = |φi|
1/2

4∑

j=1

pji∆νj (i = 1, .., 4), (S22)
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in which the bilinear form (S19) transforms into

F ({x}) = Fc −
4∑

i=1

εix
2
i (ε1 = 1, ε2 = ε3 = ε4 = −1). (S23)

The transformation of variables (S21) allows one to re-write the kinetic equation of nucleation

and chemical aging, eq.(S18), in the canonical form of the multidimensional Fokker-Planck equation

∂g({x}, t)

∂t
=

4∑

i,j=1

bij
∂

∂xi
(

∂

∂xj
− εj2xj)]g({x}, t), (S24)

where bij (i, j = 1, .., 4) are the elements of a 4×4 matrix B of diffusion coefficients in variables {x},

bij = |φiφj |
1/2

[
4∑

k=1

W+

kcpkipkj + W+

4c(p3ip3j − p3ip4j − p4ip3j)

]
. (S25)

Equation (S24) is eq.(8) of the main text.
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