Supplementary Information

Hydrophobic functional liquids based on trioctylphosphine oxide (TOPO) and carboxylic acids

Emily L. Byrne, Ruairi O'Donnell, Mark Gilmore, Nancy Artioli, John D. Holbrey* and Małgorzata Swadźba-Kwaśny*

The QUILL Research Centre, School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, United Kingdom

- 1. NMR physical characterisation starting materials (checking purity)
- 1.1. TOPO

Figure S1. ¹H spectrum of TOPO used for physical characterisation experiments. NMR solvent: d₆-acetone

Figure S2. ¹H assignment of TOPO peaks

¹Ηδ/	ppm	Multiplicity	Assignment
0.8	8	Triplet	8
1.3	0	Multiplet ^b	5-7
1.4	0	Multiplet ^b	3-4
1.5	5	Multiplet ^b	2
1.6	3	Multiplet ^b	1

Table S1.	. ¹ H assignment	of TOPO p	eaks
-----------	-----------------------------	-----------	------

Figure S3. $^{\rm 13}{\rm C}$ spectrum of TOPO used for physical characterisation experiments. NMR solvent: d_6-acetone

13 C δ / ppm	Assignment
13.40	8
21.65	3
21.69	
22.38	7
27.68	1
28.32	
28.94	6
28.98	5
30.91	2
31.04	
31.67	4

Table S2. ¹³C assignment of TOPO peaks

Figure S4. ¹H spectrum of levulinic acid used for physical characterisation experiments. NMR solvent: d₆-DMSO

Figure S5. ¹H Assignment of levulinic acid

Table S3. ¹ H assignment of le	evulinic acid
---	---------------

¹H δ / ppm	Multiplicity	Assignment
2.09	Singlet	12
2.37	Triplet	10
2.65	Triplet	11
12.06	Singlet	9

Figure S6. 13 C spectrum of levulinic acid used for physical characterisation experiments. NMR solvent: d₆-DMSO

Figure S7. ¹³C assignment of levulinic acid

¹³ C δ / ppm	Assignment
27.68	10
29.52	13
37.50	11
173.64	9
206.85	12

Table S4. ¹³C assignment of levulinic acid

1.3. Malonic acid

Figure S8. ¹H spectrum of malonic acid used for physical characterisation experiments. NMR solvent: d₆-DMSO. Purity >99.5%. Ethyl acetate impurity: 0.28% (0.33 mol%). Acetic acid impurity: 0.19% (0.33 mol%)

Figure S9. Malonic acid, acetic acid and ethyl acetate ¹H assignment

Table S5. ¹H assignment of malonic acid with trace acetic acid and ethyl acetate impurities

¹H δ / ppm	Multiplicity	Assignment
1.18	Triplet	15
1.91	Singlet	13
1.99	Singlet	11
3.25	Singlet	10
4.04	Quartet	14
12.62	singlet	9,12

Figure S10. ¹³C spectrum of malonic acid used for physical characterisation experiments. NMR solvent: d₆-DMSO

Figure S11. Malonic acid ¹³C assignment

2. Leaching study FT-IR calibration curve

Figure S12. Calibration curve used in leaching studies showing FT-IR transmission as a function of malonic acid concentration. Malonic acid dissolved in de-ionised water at concentrations 3.8-90 g L⁻¹

3. TGA physical characterisation starting materials (checking dryness)

Figure S13. TGA of TOPO under dynamic heating regime (10 $^{\circ}\text{C}$ min^-1)

3.3. Malonic acid

Figure S15. TGA of malonic acid under dynamic heating regime (10 $^\circ C$ min^-1)

4. Thermal behaviour

4.1. Isothermal TGA TOPO:Malonic acid at 90 °C

Figure S16. χ_{TOPO} = 0.33 TOPO:malonic acid held isothermally at 90 °C. Blue line = temperature derivative.

Figure S17. χ_{TOPO} = 0.33 TOPO:malonic acid held isothermally at 90 °C. Blue line = time derivative.

Figure S18. $\chi_{TOPO} = 0.60$ TOPO:malonic acid. Heating rate 10 °C min⁻¹. Shows two stage decomposition with well resolved peaks.

4.2. Evolved gas analysis TOPO:malonic acid at 90 °C

Figure S19. In situ GC-MS evolved gas analysis of χ_{TOPO} = 0.33 TOPO:malonic acid held at isothermally 90 °C

4.3. ¹³C analysis of the TOPO:malonic acid liquid phase before/after decomposition

Figure S20. ¹³C NMR spectrum of χ_{TOPO} = 0.33 TOPO:malonic acid before held isothermally at 90 C. NMR solvent: d₆-acetone

Figure S21. ^{13}C NMR peak assignment $\chi_{\text{TOPO}}\,$ = 0.33 TOPO:malonic acid before held isothermally at 90 °C

13 C δ / ppm	Assignment
14.35	8
22.09	3
22.12	
23.26	7
27.24	1
27.89	
29.73	6
29.77	5
31.60	2
31.73	
32.53	4
41.51	10
168.93	9

Table S6. ¹³C peak assignment χ_{TOPO} = 0.33 TOPO:malonic acid before decomposition, d₆-acetone. TOPO peaks in agreement with literature (d³-acetonitrile)¹

Figure S22. ¹³C NMR spectrum of χ_{TOPO} = 0.33 TOPO:malonic acid after held isothermally at 90 °C. NMR solvent: d₆-acetone

Figure S23. ¹³C NMR peak assignment χ_{TOPO} = 0.33 TOPO:malonic acid after held isothermally at 90 °C. Acetic acid also assigned. NMR solvent: d₆-acetone

13 C δ / ppm	Assignment
14.36	8
20.73	11
22.11	3
22.15	
23.28	7
27.32	1
27.97	
29.75	6
29.79	5
31.62	2
31.76	
32.54	4
41.68	10
169.03	9
172.52	12

Table S7.¹³C peak assignment $\chi_{TOPO} = 0.33$ TOPO:malonic acid after held isothermally at 90 °C. NMR solvent: d₆-acetone. Acetic acid present. TOPO peaks in agreement with literature (d₃-acetonitrile)¹

4.4. Sublimation and deposition of malonic acid from bulk of the mixture

Figure S24.¹³C NMR spectrum of malonic acid sublimed from χ_{TOPO} = 0.33 TOPO:malonic acid held at 90 °C. NMR solvent: d₆-acetone

Table S8. ¹³C peak assignment of malonic acid sublimed from $\chi_{TOPO} = 0.33$ TOPO:malonic acid held isothermally at 90 °C. NMR solvent: d₆-acetone.

Figure S25. ¹³C NMR spectrum of malonic acid deposition from χ_{TOPO} = 0.33 TOPO:malonic acid held at 90 °C. NMR solvent: d₆-acetone

Table S9. ¹³C peak assignment of malonic acid deposited from χ_{TOPO} = 0.33 TOPO:malonic acid held isothermally at 90 °C. NMR solvent: d₆-acetone.

Figure S26.¹³C NMR peak assignment of malonic acid sublimed and deposited from χ_{TOPO} = 0.33 TOPO:malonic acid held isothermally at 90 °C. NMR solvent: d₆-acetone

4.5. Dynamic heating TGA TOPO:levulinic acid 10 °C min⁻¹

Figure S27. χ_{TOPO} = 0.30 TOPO: levulinic acid. Heating rate 10 °C min⁻¹. Shows two stage decomposition.

Figure S28. χ_{TOPO} = 0.40 TOPO: levulinic acid. Heating rate 10 °C min⁻¹. Shows three stage decomposition.

4.6. Dynamic heating TGA TOPO:Levulinic acid 1 °C min⁻¹

Figure S29. χ_{TOPO} = 0.33 TOPO:levulinic acid. Heating rate 1°C min^-1

4.7. Isothermal TGA TOPO:Levulinic acid 90 and 140 °C

Figure S30. χ_{TOPO} = 0.33 TOPO: levulinic acid held isothermally at 90 °C. Blue line = temperature derivative. Initial ramping rate to isothermal = 50 °C min⁻¹.

Figure S31. χ_{TOPO} = 0.33 TOPO: levulinic acid held isothermally at 90 °C. Blue line = time derivative. Initial ramping rate to isothermal = 50 °C min⁻¹.

Figure S32. $\chi_{TOPO} = 0.33$ TOPO: levulinic acid held isothermally at 140 °C. Blue line = temperature derivative Initial ramping rate to isothermal = 50 °C min⁻¹.

Figure S33. χ_{TOPO} = 0.33 TOPO: levulinic acid held isothermally at 140 °C. Blue line = time derivative Initial ramping rate to isothermal = 50 °C min⁻¹.

Figure S34. χ_{TOPO} = 0.33 TOPO:malonic acid and TOPO:levulinic acid held isothermally at 90 °C and 140 °C. Initial ramping rate to isothermal = 50 °C min⁻¹

4.8. Evolved gas analysis TOPO:levulinic acid during heating

Figure S35. In situ GC-MS evolved gas analysis of χ_{TOPO} = 0.33 TOPO: levulinic acid held isothermally at 125 °C

Figure S36. In situ GC-MS evolved gas analysis of χ_{TOPO} = 0.33 TOPO:levulinic acid held isothermally at 140 °C

4.9. Analysis of the χ_{TOPO} = 0.33 TOPO:levulinic acid liquid phase before/after decomposition

Figure S37. ¹³C NMR spectrum of χ_{TOPO} = 0.33 TOPO:levulinic acid before held isothermally at 140 °C, neat. NMR solvent: d₆-DMSO (capillary)

Figure S38. ^{13}C NMR peak assignment χ_{TOPO} = 0.33 TOPO:levulinic acid before held isothermally at 140 °C

¹³ C δ / ppm	Assignment
13.09	8
20.56	3
20.60	
21.82	7
25.70	1
26.35	
27.14	10
28.26	6
28.31	5
28.36	13
30.10	2
30.24	
31.06	4
36.89	11
173.85	9
204.86	12

Table S10. ^{13}C NMR peak assignment χ_{TOPO} = 0.33 TOPO:levulinic acid before held isothermally at 140 °C, neat. NMR solvent: d6-DMSO (capillary)

Figure S39. ¹³C NMR spectrum of χ_{TOPO} = 0.33 TOPO:levulinic acid after held isothermally at 140 °C, neat. NMR solvent: d₆-DMSO (capillary)

Figure S40. ^{13}C NMR peak assignment $\chi_{\text{TOPO}}\,$ = 0.33 TOPO:levulinic acid after held isothermally at 140 $^{\circ}\text{C}$

¹³ C δ / ppm	Assignment
13.08	8
20.59	3
20.63	
21.81	7
25.82	1
26.47	
27.22	10
28.28	6
28.32	5
28.38	13
30.12	2
30.26	
31.06	4
36.95	11
173.18	9
204.37	12

Table S11. ¹³C NMR peak assignment χ_{TOPO} = 0.33 TOPO:levulinic acid before held isothermally at 140 °C, neat. NMR solvent: d₆-DMSO (capillary)

Figure S41. ¹H NMR spectrum of χ_{TOPO} = 0.33 TOPO:levulinic acid before held isothermally at 140 °C, neat. NMR solvent: d₆-DMSO (capillary)

Figure S42.¹H NMR peak assignment χ_{TOPO} = 0.33 TOPO:levulinic acid before held isothermally at 140 °C. NMR solvent: d₆-DMSO (capillary)

Table S12. ¹H peak assignment $\chi_{TOPO} = 0.33$ TOPO:levulinic acid before decomposition, d₆-DMSO capillary, (neat). TOPO peaks in agreement with literature (d₃-acetonitrile)¹. ^bBroad peak

¹Hδ/ppm	Multiplicity	Assignment
0.56	Triplet	8
0.96	Multiplet ^b	5-7
1.06	Multiplet ^b	4
1.20	Multiplet ^b	3
1.44	Multiplet ^b	1-2
1.77	Singlet	12
2.12	Triplet	10
2.34	Triplet	11
11.65	Singlet	9

Figure S43. ¹H NMR spectrum of χ_{TOPO} = 0.33 TOPO:levulinic acid after held isothermally at 140 °C, neat. NMR solvent: d₆-DMSO (capillary)

Figure S44. ¹H NMR peak assignment χ_{TOPO} = 0.33 TOPO:levulinic acid after held isothermally at 140 °C

¹ H δ / ppm	Multiplicity	Assignment
0.59	Triplet	8
0.99	Multiplet ^b	5-7
1.08	Multiplet ^b	4
1.22	Multiplet ^b	3
1.45	Multiplet ^b	1-2
1.79	Singlet	12
2.12	Triplet	10
2.34	Triplet	11
11.97	Singlet	9

Table S13.¹H peak assignment $\chi_{TOPO} = 0.33$ TOPO:levulinic acid after held isothermally at 140 °C, neat. NMR solvent: d₆-DMSO capillary. TOPO peaks in agreement with literature (d₃-acetonitrile)¹. ^bBroad peak

Figure S45. ¹³C NMR spectrum of levulinic acid sublimed/evaporated from χ_{TOPO} = 0.33 TOPO:malonic acid held at 140 °C. NMR solvent: d₆-DMSO

Figure S46. ¹³C NMR peak assignment of levulinic acid sublimed from χ_{TOPO} = 0.33 TOPO:levulinic acid after held isothermally at 140 °C

Table S14. ¹³C NMR peak assignment of levulinic acid sublimed from χ_{TOPO} = 0.33 TOPO:levulinic acid after held isothermally at 140 °C

¹³ C δ / ppm	Assignment
27.89	10
29.64	13
37.68	11
173.90	9
207.52	12

4.11. Comparison of thermal decomposition onset

Figure S47. Thermal decomposition (onset) as a function of TOPO mole ratio under TGA dynamic heating at 10 °C min⁻¹

5. Phase behaviour

Figure S49. DSC χ_{TOPO} = 0.10 TOPO:malonic acid

Figure S51. DSC χ_{TOPO} = 0.30 TOPO:malonic acid

Figure S53. DSC χ_{TOPO} = 0.40 TOPO:malonic acid

Figure S55. DSC χ_{TOPO} = 0.55 TOPO:malonic acid

Figure S57. DSC χ_{TOPO} = 0.67 TOPO:malonic acid

Figure S58. DSC χ_{TOPO} = 0.70 TOPO:malonic acid

Figure S59. DSC χ_{TOPO} = 0.80 TOPO:malonic acid

Figure S60. DSC χ_{TOPO} = 0.90 TOPO:malonic acid

5.2. TOPO:levulinic acid

Figure S61. DSC Pure levulinic acid

Figure S62. DSC χ_{TOPO} = 0.10 TOPO:levulinic acid

Figure S63. DSC χ_{TOPO} = 0.20 TOPO:levulinic acid

Figure S65. DSC χ_{TOPO} = 0.33 TOPO:levulinic acid

Figure S67. DSC χ_{TOPO} = 0.50 TOPO: levulinic acid

Figure S68. DSC χ_{TOPO} = 0.60 TOPO:levulinic acid

Figure S69. DSC χ_{TOPO} = 0.67 TOPO: levulinic acid

Figure S71. DSC χ_{TOPO} = 0.80 TOPO:levulinic acid

Figure S72. DSC χ_{TOPO} = 0.90 TOPO:levulinic acid

Table S15. Temperature (T_f) and enthalpy of fusion (ΔH_f) data for pure components in this work and in literature references. In this work, ΔH_f Determined from integration of DSC melting peak. ^a T_f determined from solid-liquid cell apparatus and ΔH_f not reported as sample decomposed at its melting point. ^b A higher ΔH_f value reported here is thought to be due to a greater degree of crystallinity given that the melting point agrees well with the literature.

Component	T _f / °C	$\Delta H_{\rm f}$ / kJ mol ⁻¹	Reference
ТОРО	52	39.0	This work.
	53	53.5 ^b	Sep. Purif. Technol., 2019, 216 , 147.
Malonic acid	137ª	_a	This work.
	134	23.1	J. Phys. Chem. A, 2004, 108 , 3457.
	136	-	Lide, D. R., Ed. CRC Handbook of
			Chemistry and Physics, 74th ed.; CRC
			Press: Boca Raton, FL, 1993; p 3-311.
	136	-	Tetrahedron, 1963, 19 , 2061.
Levulinic acid	32	16.7 ^b	This work
	33	9.2	Thermochim. Acta, 1991, 189 , 37.

6. ³¹P NMR of liquid samples

6.1. TOPO:malonic acid

Figure S73. ³¹P NMR spectra of liquid TOPO:malonic acid samples (neat). NMR solvent: D₃PO₄ (capillary), D₂O lock

6.2. TOPO:levulinic acid

Figure S74. ³¹P NMR spectra of liquid TOPO:levulinic acid samples (neat). NMR solvent: D₃PO₄ (capillary), D₂O lock

7. TOPO:organic acid density and molar volume

χ τορο	Density (g cm ⁻³) at temperature / °C						
	20	25	30	35	40	45	50
TOPO:malonic acid							
0.50	0.95566	0.95249	0.94917	0.94574	0.94219	0.93832	0.93393
0.55	0.94441	0.94106	0.93770	0.93432	0.93094	0.92752	0.92405
0.60	0.93282	0.92951	0.92618	0.92282	0.91941	0.91596	0.91236
0.67	0.92060	0.91732	0.91401	0.91069	0.90736	0.90399	0.90061
TOPO:levulinic acid							
0.10	1.04842	1.04448	1.04050	1.03652	1.03253	1.02854	1.02456
0.20	0.97337	0.96961	0.96584	0.96209	0.95836	0.95461	0.95089
0.30	0.96738	0.96373	0.96009	0.95644	0.95280	0.94918	0.94555
0.33	0.95942	0.95581	0.95220	0.94859	0.94499	0.94139	0.93780
0.40	0.94370	0.94015	0.93660	0.93306	0.92953	0.92600	0.92247
0.50	0.92604	0.92258	0.91911	0.91564	0.91218	0.90873	0.90527

Table S16. Density of TOPO:organic acid mixtures as a function of TOPO molar ratio (χ_{TOPO}) and temperature (°C) as shown in Figures 15 and 16.

Table S17. Molar volume of TOPO:organic acid mixtures as a function of TOPO molar ratio (χ_{TOPO}) and temperature (°C) as shown in Figures 15 and 16.

χ τορο			Molar volume	(cm³ mol ⁻¹) at te	emperature / °C	2	
	20	25	30	35	40	45	50
TOPO:malonic acid							
0.50	256.7	257.6	258.5	259.4	260.4	261.5	262.7
0.55	274.8	275.7	276.7	277.7	278.7	279.8	280.8
0.60	293.3	294.4	295.4	296.5	297.6	298.7	299.9
0.67	318.7	319.8	321.0	322.2	323.3	324.6	325.8
TOPO:levulinic acid							
0.10	136.6	137.1	137.6	138.1	138.7	139.2	139.7
0.20	174.9	175.6	176.2	176.9	177.6	178.3	179.0
0.30	203.9	204.7	205.5	206.3	207.0	207.8	208.6
0.33	214.1	214.9	215.7	216.5	217.3	218.2	219.0
0.40	237.7	238.6	239.5	240.4	241.3	242.3	243.2
0.50	271.5	272.5	273.5	274.5	275.6	276.6	277.7

Table S18. Absolute average deviation of data fitted to linear trendline y = a + bT as a function of composition for TOPO:malonic acid and TOPO:levulinic acid mixtures. The units for density and molar volume data are g cm⁻³ and cm³ mol⁻¹ respectively

Mixture	χτορο	Absolute average deviation of the fit / x10 ⁻⁵	
	_	Density ($ ho$)	Molar volume (V _m)
TOPO:malonic acid	0.50	0.4658	8.5714
	0.55	-0.4286	-5.2857
	0.60	-0.4648	-14.857
	0.67	0.4296	-4.8571
TOPO:levulinic acid	0.10	0.4658	3.5714
	0.20	0.0015	-14.0000
	0.30	0.2847	5.7143
	0.33	-0.2490	12.1429
	0.40	-0.2158	-9.5714
	0.50	0.5015	13.5714

Figure S75. Residual plot of TOPO:malonic acid density data deviation from the linear trendline

Figure S76. Residual plot of TOPO:malonic acid molar volume data deviation from the linear trendline

Figure S77. Residual plot of TOPO:levulinic acid density data deviation from the linear trendline

Figure S78. Residual plot of TOPO:malonic acid molar volume data deviation from the linear trendline

8. Leaching studies

Table S19. Changes to the composition of the TOPO:malonic acid eutectic mixture after contact with an equivolume aqueous phase due to malonic acid leaching to the aqueous phase.

[HCI] / M	χ_{TOPO} before contact	χ_{TOPO} after contact	$\Delta \chi_{ ext{topo}}$
0	0.67	0.70	0.03
	0.55	0.66	0.11
6	0.67	0.79	0.12
	0.55	0.76	0.21

9. TOPO:malonic acid extraction efficiency

Table S20. Extraction of gallium from acidic chloride feed across varying HCl concentration using χ_{TOPO} = 0.67 TOPO:malonic acid as shown in Figure 16

HCl concentration / M	Extraction efficiency / %
1	50
2	79
4	100
5	100
6	100
8	100

References

1 J. Kříž, J. Dybal, E. Makrlík, J. Budka and P. Vaňura, J. Phys. Chem. A, 2009, **113**, 5896–5905.