Supporting Information

A Useful Valence-alterable Optical Probe to Serve the Predict of Material Characteristics Based on Theoretical Calculation

Linghui Zhang ${ }^{2,3,8}$, Guoqiang Peng ${ }^{2, ~ §}$, Yujiang Wang ${ }^{1}$, Tiejun Li ${ }^{2}$, Dan Wang ${ }^{2}$, Lili Han ${ }^{1 *}$, Zhipeng Ci ${ }^{2,3^{*}}$
${ }^{1}$ College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, 730070, China
${ }^{2}$ Key Laboratory of Special Function Materials and Structure Design, Ministry of education, Lanzhou University, Lanzhou 730000,
${ }^{3}$ China National \& Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China

*Corresponding author: cizhp@lzu.edu.cn and hanlili.06@163.com.
§Both authors contributed equally to this work.

Figure S1. The PLE spectrum $\left(\lambda_{\mathrm{em}}=422 \mathrm{~nm}\right)$ and PL spectrum ($\left.\lambda_{\mathrm{ex}}=257 \mathrm{~nm}\right)$ of BSSO host.

Figure S2. The XRD patterns of the samples BSSO:X \% Eu ($\mathrm{X}=0-25$).

Figure S3. The Rietveld refinement XRD pattern of the typical sample $\mathrm{BaSnSi}_{3} \mathrm{O}_{9}: 13 \% \mathrm{Eu}$.

Figure S4. The SEM images of BSSO: $\mathrm{X} \% \mathrm{Eu}(\mathrm{X}=0.1,0.7,1,7,13,16)$.

The mic-morphologies of the typical samples $\mathrm{BaSnSi}_{3} \mathrm{O}_{9}: \mathrm{X} \%$ Eu mainly present the uneven and micro-scale blocks in Figure $\mathbf{S 4}$.

Figure S5. The spatial three-dimensional BaO_{6} and SnO_{6} octahedral structure of matrix BSSO.

Table S1. The a, b and c values of crystal structure BSSO after the CASTEP GeomOpt .

Unit Cell					
Real Lattice (\AA)			Reciprocal Lattice ($1 / \AA$)		
5.9367671	-3.4275941	0.0000000	1.0583513	0.0000000	0.0000000
0.0000000	6.8551882	0.0000000	0.5291757	0.9165591	0.0000000
0.0000000	0.0000000	10.0341159	0.0000000	0.0000000	0.6261823
Lattice parameters ($\mathbf{\AA}$)			Cell Angles		
$a=6.855188$			Alpha $=90.000000$		
$b=6.855188$			Beta=90.000000		
$c=10.034116$			Gamma=120.000000		
Current cell volume $=408.364996\left(\AA^{3}\right)$					

Table S2. The detailed crystallographic parameters of BSSO obtained by Rietveld refinement of the XRD data.

Formula			$\mathrm{BaSnSi}_{3} \mathbf{O}_{9}$		
Crystal system			Hexagonal		
Space group lattice constants			P6-c2 (188)		
a / \AA			6.7165		
b / \AA			6.7165		
c / \AA			9.8194		
c / a			1.46198		
$\alpha /{ }^{\circ}$			90		
$\beta /{ }^{\circ}$			90		
$\gamma /{ }^{\circ}$			120		
Cell volume (V / \AA^{3})			383.625		
R values			$\mathrm{R}_{\mathrm{wp}}=14.08 \%$		
			$\mathrm{R}_{\mathrm{p}}=10.29 \%$		
χ^{2}			1.937		
Atom	Wyck	x/a	y/b	z/c	
Ba	2e	0.6667	0.3333	0	
Sn	2c	0.3333	0.6667	0	
Si	6k	0.0645	0.2854	0.2500	
O1	6k	0.2398	0.1835	0.2500	
O2	121	0.0805	0.4227	0.1167	
Bond	Length(\AA)	Bond	Length(\AA)	Bond	Length(\AA)
$\mathrm{Ba}-2 \mathrm{O} 2$	2.78027	$\mathrm{Sn}-2 \mathrm{O} 2$	2.02451	Si-O1	1.60613
$\mathrm{Ba}-2 \mathrm{O} 2$	2.78047	$\mathrm{Sn}-2 \mathrm{O} 2$	2.02477	Si -O1	1.63113
Ba-202	2.78087	Sn-2O2	2.02506	Si-2O2	1.57327

 calculated by following equation: ${ }^{[1]}$

$$
\begin{equation*}
\operatorname{Dr}(\%)=100 \times\left[R_{m}(C N)-R_{d}(C N)\right] / R_{m}(C N) \tag{1}
\end{equation*}
$$

Where Dr presents the ionic radius percentage difference; $R_{m}(C N)$ and $R_{d}(C N)$) are the radius of the host cation and the doped ion, respectively; and $C N$ is the coordination number. The detailed radii values and the calculated Dr results of between $\mathrm{Eu}^{2+} / \mathrm{Eu}^{3+}$ and $\mathrm{Ba}^{2+}, \mathrm{Sn}^{4+}, \mathrm{Si}^{4+}$ ions are shown in Table S3.

Table S3. The relative deviations of ionic radius between matrix cations and doping ions. ${ }^{[2]}$

Ions	Radius/Å	CN	Dr (\%)
Eu ${ }^{3+}$	1.087	6	0
Ba^{2+}	1.49	6	27.05
Sn^{4+}	0.830	6	-30.96
Si^{4+}	0.40	4	-171.75
Eu^{2+}	1.31	6	0
Ba^{2+}	1.49	6	12.08
Sn^{4+}	0.830	6	-57.83
Si^{4+}	0.40	4	-227.5

Table S4. The detailed crystallographic parameters of BSSO:13\% Eu obtained by Rietveld refinement of the XRD data.

Formula			$\mathrm{BaSnSi}_{3} \mathrm{O}_{9} \mathbf{: 1 3 \%} \mathbf{~ E u}$		
Crystal system			Hexagonal		
Space group lattice constants			P6-c2 (188)		
al \AA			6.7630		
b / \AA			6.7630		
c / \AA			9.8895		
c / a			1.4623		
$\alpha /{ }^{\circ}$			90		
$\beta /{ }^{\circ}$			90		
$\gamma /{ }^{\circ}$			120		
Cell volume (V/ \AA^{3})			391.723		
R values			$\mathrm{R}_{\mathrm{wp}}=14.22$ \%		
			$\mathrm{R}_{\mathrm{p}}=10.79$ \%		
χ^{2}			1.286		
Atom	Wyck	\mathbf{x} / \mathbf{a}	y/b	z/c	
Ba	2e	0.6667	0.3333	0	
Sn	2c	0.3333	0.6667	0	
Si	6k	0.0627	0.2851	0.2500	
O1	6k	0.2421	0.1789	0.2500	
O2	121	0.0819	0.4206	0.1179	
Bond	Length(\AA)	Bond	Length(\AA)	Bond	Length(\AA)
Ba-2O2	2.81695	Sn-2O2	2.04292	Si-O1	1.57192
Ba-2O2	2.81714	Sn-2O2	2.04719	Si-O1	1.69064
Ba-2O2	2.81755	Sn-2O2	2.04748	Si-2O2	1.56323

Table S5. The detailed information about atom 1(O2)-Ba-atom 3(O2) bond angle, atom 1 and atom 3 represent O 2 atoms located in different position around Ba atom.

Angle	Degrees	Angle	Degrees
$1 O(2)-B a-2 O(2)$	60.063	$1 O(2)-S n-2 O(2)$	91.009
$1 O(2)-B a-3 O(2)$	104.187	$1 O(2)-S n-3 O(2)$	91.126
$1 O(2)-B a-4 O(2)$	158.451	$1 O(2)-S n-4 O(2)$	177.082
$1 O(2)-B a-5 O(2)$	104.192	$1 O(2)-S n-5 O(2)$	91.118
$1 O(2)-B a-6 O(2)$	94.488	$1 O(2-S n-6 O(2)$	86.851
$4 O(2)-B a-2 O(2)$	104.192	$4 O(2)-S n-2 O(2)$	91.118
$4 O(2)-B a-3 O(2)$	60.075	$4 O(2)-S n-3 O(2)$	90.985
$4 O(2)-B a-5 O(2)$	94.506	$4 O(2)-S n-5 O(2)$	86.826
$4 O(2)-B a-6 O(2)$	104.203	$4 O(2)-S n-6 O(2)$	91.110
$2 O(2)-B a-3 O(2)$	94.488	$2 O(2)-S n-3 O(2)$	86.851
$2 O(2)-B a-5 O(2)$	158.451	$2 O(2)-S n-5 O(2)$	177.082
$2 O(2)-B a-6 O(2)$	104.187	$2 O(2)-S n-6 O(2)$	91.126
$3 O(2)-B a-5 O(2)$	104.203	$3 O(2)-S n-5 O(2)$	91.110
$3 O(2)-B a-6 O(2)$	158.475	$3 O(2)-S n-6 O(2)$	177.115
$5 O(2)-B a-6 O(2)$	60.075	$5 O(2)-S n-6 O(2)$	90.985

The detailed $\boldsymbol{E}_{c t}$ calculations are shown as follows:

Zhang and Levine ${ }^{[3,4]}$ extended the theory on the basis of the theory developed by Phillips and Van Vechten (PV) ${ }^{[5,6]}$ which is suitable to the compounds with a complex structure. In this theory, the complicated crystals with molecular formula: $A_{a 1}^{1} A_{a 2}^{2} \ldots$ $A_{a i}^{i} B_{b 1}^{1} B_{b 2 \ldots}^{2} B_{b j}^{j}$ can be expressed by the following sub-formula:

$$
\begin{array}{r}
\frac{N\left(B^{j}-A^{i}\right) \times a^{i}}{N_{C A^{i}}} A^{i} \frac{N\left(A^{i}-B^{j}\right) \times b^{j}}{N_{C B^{j}}} B^{j}=A_{m_{i}}^{i} B_{n_{j}}^{j} \\
m_{i}=\frac{N\left(B^{j}-A^{i}\right) \times a^{i}}{N_{C A^{i}}} n_{j}=\frac{N\left(A^{i}-B^{j}\right) \times b^{j}}{N_{C B^{j}}} \tag{3}
\end{array}
$$

The bond sub formula equation is given by

$$
\begin{equation*}
A_{a 1}^{1} A_{a 2}^{2} \ldots \ldots A_{a i}^{i} B_{b 1}^{1} B_{b 2}^{2} \ldots \ldots B_{b j}^{j}=\sum_{i, j} A_{m_{i}}^{i} B_{n_{j}}^{j} \tag{4}
\end{equation*}
$$

where $A_{a_{i},}^{i} B_{b_{j}}^{j}$ show the different constituent elements or different sites of the same element in the crystal formula, and a_{i}, b_{j} are the number of the corresponding elements. $N\left(B^{j}-A^{i}\right)$ is the number of B^{j} ions in the coordination group of a A^{i} ion, and $N_{C A^{i}}$ represents the nearest coordination number of the A^{i} ion. Therefore, the complex crystal is decomposed into the sum of diverse binary crystals like $A_{m_{i}}^{i} B_{n_{j}}^{j}$. For any binary $A_{m} B_{n}$, charge Q_{A} is the normal valence of the cation A, and Q_{B} is that obtained from $Q_{B}=\frac{m Q_{A}}{n}$.

According to $\mathrm{PV}^{[5]}$ and Levine's theory, ${ }^{[4]}$ the total macroscopic linear susceptibility χ of crystals from the various types of bonds can be represented by the
following equation:

$$
\begin{gather*}
\chi=\sum_{\mu} F^{\mu} \chi^{\mu}=\sum_{\mu} N_{b}^{\mu} \chi_{b}^{\mu} \tag{5}\\
\epsilon^{\mu}=1+4 \pi \chi^{\mu} \tag{6}
\end{gather*}
$$

Where ϵ is the crystal dielectric constant, obtained from the index of refraction n ($\epsilon=n^{2}$). ϵ^{μ} is the dielectric constant of a μ type chemical bond, F^{μ} is the fraction of bonds of type μ composing the actual crystal, χ_{b}^{μ} is the susceptibility of a single bond of type μ, and N_{b}^{μ} is the number of bonds per cubic centimeter. χ^{μ} is the total macroscopic susceptibility which a crystal composed entirely of bonds of type μ would have, which can be shown as:

$$
\begin{equation*}
\chi^{\mu}=(4 \pi)^{-1}\left(\hbar \Omega_{p}^{\mu}\right)^{2} /\left(E_{g}^{\mu}\right)^{2} \tag{7}
\end{equation*}
$$

Where E_{g}^{μ} is the average energy gap for μ type bonds (in eV), Ω_{p}^{μ} is the plasma frequency obtained from the number of valence electrons of type μ per cubic centimeter N_{e}^{μ}, using the following equation:

$$
\begin{equation*}
\left(\Omega_{p}^{\mu}\right)^{2}=\left(4 \pi\left(N_{e}^{\mu}\right)^{*} e^{2} / m\right) D^{\mu} A^{\mu} \tag{8}
\end{equation*}
$$

Where D^{μ} and A^{μ} are correction factors, their expressions are:

$$
\begin{gather*}
D^{\mu}(A, B)=\Delta_{A}^{\mu} \Delta_{B}^{\mu}-\left(\delta_{A}^{\mu} \delta_{B}^{\mu}-1\right)\left[\left(Z_{A}^{\mu}\right)^{*}-\left(Z_{B}^{\mu}\right)^{*}\right]^{2} \tag{9}\\
A^{\mu}=1-\left(\frac{E_{g}^{\mu}}{4 E_{F}^{\mu}}\right)+\left(\frac{E_{g}^{\mu}}{4 E_{F}^{\mu}}\right)^{2} / 3 \tag{1}
\end{gather*}
$$

Where $\left(Z_{A}^{\mu}\right)^{*}$ and $\left(Z_{B}^{\mu}\right)^{*}$ are the numbers of effective valence electrons on the A and B atoms of the μ bond, Δ and δ are the periodic dependent constants ${ }^{[4]}$. The Fermi
energy E_{F}^{μ} (in eV) is given in terms of the Fermi wave vector E_{F}^{μ} by

$$
\begin{gather*}
E_{F}^{\mu}=\left(\hbar K_{F}^{\mu}\right)^{2} / 2 m \tag{11}\\
\left(K_{F}^{\mu}\right)^{3}=3 \pi^{2}\left(N_{e}^{\mu}\right)^{*} \tag{12}
\end{gather*}
$$

Here, $\left(N_{e}^{\mu}\right)^{*}$ is the effective valence electron density for the μ bond per cubic centimeter and it is given by:

$$
\begin{gather*}
\left(N_{e}^{\mu}\right)^{*}=\left(n_{e}^{\mu}\right)^{*} / v_{b}^{\mu} \tag{13}\\
\left(n_{e}^{\mu}\right)^{*}=\frac{\left(Z_{A}^{\mu}\right)^{*}}{N_{C A}^{\mu}}+\frac{\left(Z_{B}^{\mu}\right)^{*}}{N_{C B}^{\mu}} \tag{14}\\
v_{b}^{\mu}=\left(d_{\mu}\right)^{3} / \sum_{v}\left(d_{v}\right)^{3} N_{b}^{v} \tag{15}
\end{gather*}
$$

Where, $\left(n_{e}^{\mu}\right)^{*}$ is the number of effective valence electrons per μ bond. The bond volume $v_{b}^{\mu}\left(\AA^{3}\right)$ for the bonds of type μ is proportional to $\left(d_{\mu}\right)^{3}$, where d_{μ} is the bond distance $(\AA) . N_{b}^{v}$ is the number of bonds of type ${ }^{v}$ per cubic centimeter. The average
 energy $C^{\mu}(\mathrm{eV})$ as shown in the equation below:

$$
\begin{equation*}
\left(E_{g}^{\mu}\right)^{2}=\left(E_{h}^{\mu}\right)^{2}+\left(C^{\mu}\right)^{2} \tag{16}
\end{equation*}
$$

The covalency of any μ type bonds is defined as:

$$
\begin{equation*}
f_{c}^{\mu}=\left(E_{h}^{\mu}\right)^{2} /\left(E_{g}^{\mu}\right)^{2} \tag{17}
\end{equation*}
$$

Where

$$
\begin{equation*}
E_{h}^{\mu}=39.74 /\left(d_{\mu}\right)^{2.48} \tag{18}
\end{equation*}
$$

$$
\begin{align*}
& C^{\mu}=14.4 b^{\mu} \exp \left(-k_{s}^{\mu} * r_{o}^{\mu}\right)\left[\left(Z_{A}^{\mu}\right)^{*}-\left(\frac{n}{m}\right)\left(Z_{B}^{\mu}\right)^{*}\right] / r_{o}^{\mu}(n>m)(\mathrm{eV}) \tag{19}\\
& C^{\mu}=14.4 b^{\mu} \exp \left(-k_{s}^{\mu} * r_{o}^{\mu}\right)\left[\left(\frac{m}{n}\right)\left(Z_{A}^{\mu}\right)^{*}-\left(Z_{B}^{\mu}\right)^{*}\right] / r_{o}^{\mu}(n \leq m)(\mathrm{eV}) \tag{20}
\end{align*}
$$

With

$$
\begin{gather*}
r_{o}^{\mu}=d_{\mu} / 2 \tag{21}\\
k_{s}^{\mu}=\left(\frac{4 k_{F}^{\mu}}{\pi \alpha_{B}}\right)^{1 / 2} \tag{22}
\end{gather*}
$$

Here, k_{s}^{μ} is the Thomas-Fermis screening wavenumber of valence electrons and α_{B} is the Bohr radius. b^{μ} is shown in the following equation:

$$
\begin{gather*}
b^{\mu}=\beta\left(N_{C}^{\mu}\right)^{2} \tag{23}\\
N_{C}^{\mu}=m N_{C A}^{\mu} /(m+n)+n N_{C B}^{\mu} /(m+n) \tag{24}
\end{gather*}
$$

Where b^{μ} depends on the crystal structure.

Once the dielectric constant of the crystal is known, the value of β can be deduced from the above equations. When the dielectric constant is unknown, it may also be estimated by using the β value of its isostructural crystals. The environmental factor designated by the symbol he can be expressed as: ${ }^{[6,7]}$

$$
\begin{equation*}
h_{e}=\left(\sum_{\mu} f_{c}^{\mu} \alpha_{b}^{\mu} Q_{B}^{\mu 2}\right)^{1 / 2} \tag{25}
\end{equation*}
$$

Where Q_{B}^{μ} stands for the presented charge of the nearest anion in the chemical bond, and α_{b}^{μ} is the polarizability of the chemical bond volume in the μ type of chemical
bonds.

For the chemical bond of type μ, the polarizable coefficient α_{o}^{μ} can be obtained from the Lorentz-Lorenz equation:

$$
\begin{equation*}
\frac{\epsilon^{\mu}-1}{\epsilon^{\mu}-2}=(4 \pi / 3) \alpha_{o}^{\mu} \tag{26}
\end{equation*}
$$

Hence, the polarizability of the chemical bond volume $\left(\AA^{3}\right)$ is given by

$$
\begin{equation*}
\alpha_{b}^{\mu}=\alpha_{o}^{\mu} v_{b}^{\mu} \tag{27}
\end{equation*}
$$

By zhang's analysis, the charge transition energy $\left(\mathrm{E}_{\mathrm{ct}}\right)$ could be obtained by the following empirical formula:

$$
\begin{equation*}
E_{c t}=A+B e^{-k h_{e}} \tag{28}
\end{equation*}
$$

Where $A=2.804, B=6.924$, and $k=1.256$ for the Eu^{3+} ion. These constants only relate to the type of rare earth ion.

Reference

[1]. Kasturi, S; Sivakumar, V; Varadaraju, U V,Synthesis and photoluminescence of EuII in barium zinc orthosilicate: a novel green color emitting phosphor for white-LEDs. Luminescence 2017, 32, (3), 334-340.
[2]. Shannon, R,Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A 1976, 32, (5), 751-767.
[3]. Wu, Z J; Zhang, S Y,Semiempirical Method for the Evaluation of Bond Covalency in Complex Crystals. The Journal of Physical Chemistry A 1999, 103, (21), 4270-4274.
[4]. Levine, B F,Bond susceptibilities and ionicities in complex crystal structures. J. Chem. Phys. 1973, 59, (3), 1463-1486.
[5]. Phillips, J C,Ionicity of the Chemical Bond in Crystals. Reviews of Modern Physics 1970, 42, (3), 317-356.
[6]. Gao, F; Zhang, S,Investigation of mechanism of nephelauxetic effect. Journal of Physics and Chemistry of Solids 1997, 58, (12), 1991-1994.
[7]. Shi, J S; Wu, Z J; Zhou, S H, et al.,Dependence of crystal field splitting of 5d levels on hosts in the halide crystals. Chemical Physics Letters 2003, 380, (3), 245-250.

