Supporting Information

A Useful Valence-alterable Optical Probe to Serve the Predict of Material Characteristics Based on Theoretical Calculation

Linghui Zhang ^{2, 3, §}, Guoqiang Peng ^{2, §}, Yujiang Wang ¹, Tiejun Li ², Dan Wang ², Lili Han ¹*, Zhipeng Ci ^{2, 3*}

¹College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, 730070, China

²Key Laboratory of Special Function Materials and Structure Design, Ministry of education, Lanzhou University, Lanzhou 730000,

³China National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China

*Corresponding author: <u>cizhp@lzu.edu.cn and hanlili.06@163.com.</u>

[§]Both authors contributed equally to this work.

Figure S1. The PLE spectrum (λ_{em} =422 nm) and PL spectrum (λ_{ex} =257 nm) of BSSO host.

Figure S2. The XRD patterns of the samples BSSO:X % Eu (X=0-25).

Figure S3. The Rietveld refinement XRD pattern of the typical sample BaSnSi₃O₉:13% Eu.

Figure S4. The SEM images of BSSO:X% Eu (X= 0.1, 0.7, 1, 7, 13, 16).

The mic-morphologies of the typical samples $BaSnSi_3O_9$:X% Eu mainly present the uneven and micro-scale blocks in **Figure S4**.

Figure S5. The spatial three-dimensional BaO₆ and SnO₆ octahedral structure of matrix BSSO.

Unit Cell					
Real Lattice (Å)			Reciprocal Lattice (1/Å)		
5.9367671	-3.4275941	0.0000000	1.0583513	0.0000000	0.0000000
0.0000000	6.8551882	0.0000000	0.5291757	0.9165591	0.0000000
0.0000000	0.0000000	10.0341159	0.0000000	0.0000000	0.6261823
Lattice parameters (Å)			Cell Angles		
<i>a</i> =6.855188			Alpha=90.000000		
<i>b</i> =6.855188			Beta=90.000000		
<i>c</i> =10.034116			Gamma=120.000000		
Current cell volume =408.364996 (Å ³)					

Table S1. The *a*, *b* and *c* values of crystal structure BSSO after the CASTEP GeomOpt.

Formula			BaSnSi ₃ O ₉			
Crystal system			Hexagonal			
Space group lattice constants			P6-c2 (188)			
a/Å			6.7165			
$b/\text{\AA}$			6.7165			
c/Å			9.8194			
c/a			1.46198			
$\alpha/^{\circ}$			90			
<i>β</i> /°			90			
γ/°			120			
Cell volume (V	(/Å ³)		383.625			
R values			Rwp=14.08 %			
			R _p =10.29 %			
χ^2			1.937			
Atom	Wyck	x/a	y/b	z/c		
Ba	2e	0.6667	0.3333	0		
Sn	2c	0.3333	0.6667	0		
Si	6k	0.0645	0.2854	0.2500		
01	6k	0.2398	0.1835	0.2500		
02	121	0.0805	0.4227	0.1167		
Bond	Length(Å)	Bond	Length(Å)	Bond	Length(Å)	
Ba-2O2	2.78027	Sn-2O2	2.02451	Si -01	1.60613	
Ba-2O2	2.78047	Sn-2O2	2.02477	Si -O1	1.63113	
Ba-2O2	2.78087	Sn-2O2	2.02506	Si -2O2	1.57327	

Table S2. The detailed crystallographic parameters of BSSO obtained by Rietveld refinement of the XRD data.

The relative deviations of ionic radius (Dr) between matrix cations and Eu³⁺/Eu²⁺ can be calculated by following equation:^[1]

$$Dr(\%) = 100 \times [R_m(CN) - R_d(CN)]/R_m(CN)$$
 (1)

Where Dr presents the ionic radius percentage difference; $R_m(CN)$ and $R_d(CN)$) are the radius of the host cation and the doped ion, respectively; and CN is the coordination number. The detailed radii values and the calculated Dr results of between Eu²⁺/Eu³⁺ and Ba²⁺, Sn⁴⁺, Si⁴⁺ ions are shown in **Table S3**.

Ions	Radius/Å	CN	Dr (%)
Eu ³⁺	1.087	6	0
Ba^{2+}	1.49	6	27.05
Sn^{4+}	0.830	6	-30.96
Si ⁴⁺	0.40	4	-171.75
Eu ²⁺	1.31	6	0
Ba^{2+}	1.49	6	12.08
Sn^{4+}	0.830	6	-57.83
Si ⁴⁺	0.40	4	-227.5

Table S3. The relative deviations of ionic radius between matrix cations and doping ions.^[2]

Formula			BaSnSi ₃ O ₉ :13%	e Eu		
Crystal system			Hexagonal			
Space group lattice constants			P6-c2 (188)			
<i>a</i> / Å			6.7630			
$b/\text{\AA}$			6.7630			
$c/\text{\AA}$			9.8895			
c/a			1.4623			
<i>α</i> /°			90			
$\beta/^{\circ}$			90			
γ/°			120			
Cell volume (V/Å ³)		391.723			
<i>R</i> values			R _{wp} =14.22 %			
			R _p =10.79 %			
χ^2			1.286			
Atom	Wyck	x/a	y/b	z/c		
Ba	2e	0.6667	0.3333	0		
Sn	2c	0.3333	0.6667	0		
Si	6k	0.0627	0.2851	0.2500		
01	6k	0.2421	0.1789	0.2500		
O2	121	0.0819	0.4206	0.1179		
Bond	Length(Å)	Bond	Length(Å)	Bond	Length(Å)	
Ba-2O2	2.81695	Sn-2O2	2.04292	Si-O1	1.57192	
Ba-2O2	2.81714	Sn-2O2	2.04719	Si-O1	1.69064	
Ba-2O2	2.81755	Sn-2O2	2.04748	Si-2O2	1.56323	

Table S4. The detailed crystallographic parameters of BSSO:13% Eu obtained by Rietveld refinement of the XRD data.

Angle	Degrees	Angle	Degrees
10(2)-Ba-20(2)	60.063	10(2)-Sn-20(2)	91.009
10(2)-Ba-30(2)	104.187	10(2)-Sn-30(2)	91.126
10(2)-Ba-40(2)	158.451	10(2)-Sn-40(2)	177.082
10(2)-Ba-50(2)	104.192	10(2)-Sn-50(2)	91.118
10(2)-Ba-60(2)	94.488	10(2-Sn-60(2)	86.851
4O(2)-Ba-2O(2)	104.192	40(2)-Sn-20(2)	91.118
4O(2)-Ba-3O(2)	60.075	40(2)-Sn-30(2)	90.985
4O(2)-Ba-5O(2)	94.506	40(2)-Sn-50(2)	86.826
4O(2)-Ba-6O(2)	104.203	40(2)-Sn-60(2)	91.110
2O(2)-Ba-3O(2)	94.488	20(2)-Sn-30(2)	86.851
2O(2)-Ba-5O(2)	158.451	20(2)-Sn-50(2)	177.082
2O(2)-Ba-6O(2)	104.187	20(2)-Sn-60(2)	91.126
3O(2)-Ba-5O(2)	104.203	30(2)-Sn-50(2)	91.110
3O(2)-Ba-6O(2)	158.475	30(2)-Sn-60(2)	177.115
5O(2)-Ba-6O(2)	60.075	50(2)-Sn-60(2)	90.985

 Table S5. The detailed information about *atom 1(O2)-Ba- atom 3(O2)* bond angle, atom 1 and atom

 3 represent O2 atoms located in different position around Ba atom.

The detailed *E_{ct}* calculations are shown as follows:

Zhang and Levine^[3, 4] extended the theory on the basis of the theory developed by Phillips and Van Vechten (PV),^[5, 6] which is suitable to the compounds with a complex structure. In this theory, the complicated crystals with molecular formula: $A_{a1}^{1}A_{a2}^{2}$... $A_{ai}^{i}B_{b1}^{1}B_{b2}^{2}...B_{bj}^{j}$ can be expressed by the following sub-formula:

$$\frac{N(B^{j} - A^{i}) \times a^{i}}{N_{CA^{i}}} A^{i} \frac{N(A^{i} - B^{j}) \times b^{j}}{N_{CB^{j}}} B^{j} = A_{m_{i}}^{i} B_{n_{j}}^{j}$$
(2)
$$m_{i} = \frac{N(B^{j} - A^{i}) \times a^{i}}{N_{CA^{i}}}, n_{j} = \frac{N(A^{i} - B^{j}) \times b^{j}}{N_{CB^{j}}}$$
(3)

Where

The bond sub formula equation is given by

$$A_{a1}^{1}A_{a2}^{2}\dots A_{ai}^{i}B_{b1}^{1}B_{b2}^{2}\dots B_{bj}^{j} = \sum_{i,j} A_{m_{i}}^{i}B_{n_{j}}^{j}$$
(4)

where $A_{a_i}^i$, $B_{b_j}^j$ show the different constituent elements or different sites of the same element in the crystal formula, and a_i , b_j are the number of the corresponding elements. $N(B^j - A^i)$ is the number of B^j ions in the coordination group of a A^i ion, and N_{CA^i} represents the nearest coordination number of the A^i ion. Therefore, the complex crystal is decomposed into the sum of diverse binary crystals like $A_{m_i}^i, B_{n_j}^j$. For any binary $A_m B_n$, charge Q_A is the normal valence of the cation A, and Q_B is that obtained

from
$$Q_B = \frac{mQ_A}{n}$$

According to $PV^{[5]}$ and Levine's theory,^[4] the total macroscopic linear susceptibility χ of crystals from the various types of bonds can be represented by the

following equation:

$$\chi = \sum_{\mu} F^{\mu} \chi^{\mu} = \sum_{\mu} N^{\mu}_{b} \chi^{\mu}_{b}$$
(5)
$$\epsilon^{\mu} = 1 + 4\pi \chi^{\mu}$$
(6)

Where ϵ is the crystal dielectric constant, obtained from the index of refraction *n* ($\epsilon = n^2$). ϵ^{μ} is the dielectric constant of a μ type chemical bond, F^{μ} is the fraction of bonds of type μ composing the actual crystal, χ^{μ}_{b} is the susceptibility of a single bond of type μ , and N^{μ}_{b} is the number of bonds per cubic centimeter. χ^{μ} is the total macroscopic susceptibility which a crystal composed entirely of bonds of type μ would have, which can be shown as:

$$\chi^{\mu} = (4\pi)^{-1} (\hbar \Omega_{p}^{\mu})^{2} / (E_{g}^{\mu})^{2}$$
(7)

Where E_g^{μ} is the average energy gap for μ type bonds (in eV), Ω_p^{μ} is the plasma frequency obtained from the number of valence electrons of type μ per cubic centimeter N_{e}^{μ} , using the following equation:

$$\left(\Omega_p^{\mu}\right)^2 = (4\pi (N_e^{\mu})^* e^2/m) D^{\mu} A^{\mu}$$
(8)

Where D^{μ} and A^{μ} are correction factors, their expressions are:

$$D^{\mu}(A,B) = \Delta^{\mu}_{A}\Delta^{\mu}_{B} - \left(\delta^{\mu}_{A}\delta^{\mu}_{B} - 1\right)\left[\left(Z^{\mu}_{A}\right)^{*} - \left(Z^{\mu}_{B}\right)^{*}\right]^{2}$$
(9)
$$A^{\mu} = 1 - \left(\frac{E^{\mu}_{g}}{4E^{\mu}_{F}}\right) + \left(\frac{E^{\mu}_{g}}{4E^{\mu}_{F}}\right)^{2}/3$$
(10)

Where $(Z_A^{\mu})^*$ and $(Z_B^{\mu})^*$ are the numbers of effective valence electrons on the A and B atoms of the μ bond, Δ and δ are the periodic dependent constants^[4]. The Fermi

energy E_F^{μ} (in eV) is given in terms of the Fermi wave vector E_F^{μ} by

$$E_F^{\mu} = (\hbar K_F^{\mu})^2 / 2m \qquad (11)$$
$$(K_F^{\mu})^3 = 3\pi^2 (N_e^{\mu})^* \qquad (12)$$

Here, $(N_e^{\mu})^*$ is the effective valence electron density for the μ bond per cubic centimeter and it is given by:

$$(N_{e}^{\mu})^{*} = (n_{e}^{\mu})^{*} / v_{b}^{\mu}$$
(13)
$$(n_{e}^{\mu})^{*} = \frac{(Z_{A}^{\mu})^{*}}{N_{CA}^{\mu}} + \frac{(Z_{B}^{\mu})^{*}}{N_{CB}^{\mu}}$$
(14)
$$v_{b}^{\mu} = (d_{\mu})^{3} / \sum_{\nu} (d_{\nu})^{3} N_{b}^{\nu}$$
(15)

Where, ${(n_e^{\mu})}^*$ is the number of effective valence electrons per μ bond. The bond volume v_b^{μ} (Å³) for the bonds of type μ is proportional to ${(d_{\mu})}^3$, where d_{μ} is the bond distance (Å). N_b^{ν} is the number of bonds of type ν per cubic centimeter. The average energy gap E_g^{μ} (eV) can be separated into homopolar energy E_h^{μ} (eV) and heteropolar energy C^{μ} (eV) as shown in the equation below:

$$(E_g^{\mu})^2 = (E_h^{\mu})^2 + (C^{\mu})^2 \qquad (16)$$

The covalency of any μ type bonds is defined as:

$$f_c^{\mu} = (E_h^{\mu})^2 / (E_g^{\mu})^2 \qquad (17)$$

Where

$$E_h^{\mu} = 39.74/(d_{\mu})^{2.48}$$
 (18)

$$C^{\mu} = 14.4b^{\mu} \exp\left(-k_{s}^{\mu} * r_{o}^{\mu}\right) \left[\left(Z_{A}^{\mu}\right)^{*} - \left(\frac{n}{m}\right) \left(Z_{B}^{\mu}\right)^{*} \right] / r_{o}^{\mu} \qquad (n > m) \text{ (eV)} \qquad (19)$$

$$C^{\mu} = 14.4b^{\mu} \exp\left(-k_{s}^{\mu} * r_{o}^{\mu}\right) \left[\left(\frac{m}{n}\right) \left(Z_{A}^{\mu}\right)^{*} - \left(Z_{B}^{\mu}\right)^{*}\right] / r_{o}^{\mu} (n \le m) \text{ (eV)}$$
(20)

With

$$r_o^{\mu} = d_{\mu}/2$$
 (21)
 $k_s^{\mu} = (\frac{4k_F^{\mu}}{\pi \alpha_B})^{1/2}$ (22)

Here, k_s^{μ} is the Thomas-Fermis screening wavenumber of valence electrons and α_B is the Bohr radius. b^{μ} is shown in the following equation:

$$b^{\mu} = \beta (N_{C}^{\mu})^{2}$$
(23)
$$N_{C}^{\mu} = m N_{CA}^{\mu} / (m+n) + n N_{CB}^{\mu} / (m+n)$$
(24)

Where b^{μ} depends on the crystal structure.

Once the dielectric constant of the crystal is known, the value of β can be deduced from the above equations. When the dielectric constant is unknown, it may also be estimated by using the β value of its isostructural crystals. The environmental factor designated by the symbol *h*e can be expressed as:^[6, 7]

$$h_e = (\sum_{\mu} f_c^{\mu} \alpha_b^{\mu} Q_B^{\mu 2})^{1/2}$$
(25)

Where Q_B^{μ} stands for the presented charge of the nearest anion in the chemical bond, and α_b^{μ} is the polarizability of the chemical bond volume in the μ type of chemical

bonds.

For the chemical bond of type μ , the polarizable coefficient α_o^{μ} can be obtained from the Lorentz-Lorenz equation:

$$\frac{\epsilon^{\mu} - 1}{\epsilon^{\mu} - 2} = (4\pi/3)\alpha_o^{\mu} \tag{26}$$

Hence, the polarizability of the chemical bond volume $(Å^3)$ is given by

$$\alpha_b^{\mu} = \alpha_o^{\mu} \nu_b^{\mu} \qquad (27)$$

By zhang's analysis, the charge transition energy (E_{ct}) could be obtained by the following empirical formula:

$$E_{ct} = A + Be^{-kh_e} \tag{28}$$

Where A=2.804, B=6.924, and k=1.256 for the Eu³⁺ ion. These constants only relate to the type of rare earth ion.

Reference

- Kasturi, S; Sivakumar, V; Varadaraju, U V,Synthesis and photoluminescence of EuII in barium zinc orthosilicate: a novel green color emitting phosphor for white-LEDs. Luminescence 2017, 32, (3), 334-340.
- [2]. Shannon, R,Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A 1976, 32, (5), 751-767.
- [3]. Wu, Z J; Zhang, S Y,Semiempirical Method for the Evaluation of Bond Covalency in Complex Crystals. The Journal of Physical Chemistry A 1999, *103*, (21), 4270-4274.
- [4]. Levine, B F,Bond susceptibilities and ionicities in complex crystal structures. J. Chem. Phys. 1973, 59, (3), 1463-1486.
- [5]. Phillips, J C,Ionicity of the Chemical Bond in Crystals. Reviews of Modern Physics 1970, *42*, (3), 317-356.
- [6]. Gao, F; Zhang, S,Investigation of mechanism of nephelauxetic effect. Journal of Physics and Chemistry of Solids 1997, 58, (12), 1991-1994.
- [7]. Shi, J S; Wu, Z J; Zhou, S H, et al., Dependence of crystal field splitting of 5d levels on hosts in the halide crystals. Chemical Physics Letters 2003, 380, (3), 245-250.