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Figure S1. The PLE spectrum (λem=422 nm) and PL spectrum (λex=257 nm) of BSSO host.



Figure S2. The XRD patterns of the samples BSSO:X % Eu (X=0-25). 



Figure S3. The Rietveld refinement XRD pattern of the typical sample BaSnSi3O9:13% Eu.



Figure S4. The SEM images of BSSO:X% Eu (X= 0.1, 0.7, 1, 7, 13, 16).

The mic-morphologies of the typical samples BaSnSi3O9:X% Eu mainly present 

the uneven and micro-scale blocks in Figure S4. 



Figure S5. The spatial three-dimensional BaO6 and SnO6 octahedral structure of matrix BSSO. 



Table S1. The a, b and c values of crystal structure BSSO after the CASTEP GeomOpt .

Unit Cell

Real Lattice (Å) Reciprocal Lattice (1/Å)

5.9367671 -3.4275941 0.0000000 1.0583513 0.0000000 0.0000000

0.0000000 6.8551882 0.0000000 0.5291757 0.9165591 0.0000000

0.0000000 0.0000000 10.0341159 0.0000000 0.0000000 0.6261823

Lattice parameters (Å) Cell Angles

a=6.855188 Alpha=90.000000

b=6.855188 Beta=90.000000

c=10.034116 Gamma=120.000000

Current cell volume=408.364996 (Å3)



Table S2. The detailed crystallographic parameters of BSSO obtained by Rietveld refinement of 
the XRD data.

Formula BaSnSi3O9

Crystal system Hexagonal

Space group lattice constants P6-c2 (188)

a/Å 6.7165

b/Å 6.7165

c/Å 9.8194

c/a 1.46198

α/° 90

β/° 90

γ/° 120

Cell volume (V/Å3) 383.625

R values Rwp=14.08 %

Rp=10.29 %

χ2 1.937

Atom Wyck x/a y/b z/c

Ba 2e 0.6667 0.3333 0

Sn 2c 0.3333 0.6667 0

Si 6k 0.0645 0.2854 0.2500

O1 6k 0.2398 0.1835 0.2500

O2 12l 0.0805 0.4227 0.1167

Bond Length(Å) Bond Length(Å) Bond Length(Å)

Ba-2O2 2.78027 Sn-2O2 2.02451 Si -O1 1.60613

Ba-2O2 2.78047 Sn-2O2 2.02477 Si -O1 1.63113

Ba-2O2 2.78087 Sn-2O2 2.02506 Si -2O2 1.57327



The relative deviations of ionic radius (Dr) between matrix cations and Eu3+/Eu2+ can be 

calculated by following equation:[1]

    (1)𝐷𝑟(%) = 100 × [𝑅𝑚(𝐶𝑁) ‒ 𝑅𝑑(𝐶𝑁)]/𝑅𝑚(𝐶𝑁)

Where Dr presents the ionic radius percentage difference;  and ) are the radius 𝑅𝑚(𝐶𝑁) 𝑅𝑑(𝐶𝑁)

of the host cation and the doped ion, respectively; and CN is the coordination number. The detailed 

radii values and the calculated Dr results of between Eu2+/Eu3+ and Ba2+, Sn4+, Si4+ ions are shown 

in Table S3. 

Table S3. The relative deviations of ionic radius between matrix cations and doping ions.[2]

Ions Radius/Å CN Dr (%)

Eu3+ 1.087 6 0

Ba2+ 1.49 6 27.05

Sn4+ 0.830 6 -30.96

Si4+ 0.40 4 -171.75

Eu2+ 1.31 6 0

Ba2+ 1.49 6 12.08

Sn4+ 0.830 6 -57.83

Si4+ 0.40 4 -227.5



Table S4. The detailed crystallographic parameters of BSSO:13% Eu obtained by Rietveld 
refinement of the XRD data.

Formula BaSnSi3O9:13% Eu

Crystal system Hexagonal

Space group lattice constants P6-c2 (188)

a/ Å 6.7630

b/Å 6.7630

c/Å 9.8895

c/a 1.4623

α/° 90

β/° 90

γ/° 120

Cell volume (V/Å3) 391.723

R values Rwp=14.22 %

Rp=10.79 %

χ2 1.286

Atom Wyck x/a y/b z/c

Ba 2e 0.6667 0.3333 0

Sn 2c 0.3333 0.6667 0

Si 6k 0.0627 0.2851 0.2500

O1 6k 0.2421 0.1789 0.2500

O2 12l 0.0819 0.4206 0.1179

Bond Length(Å) Bond Length(Å) Bond Length(Å)

Ba-2O2 2.81695 Sn-2O2 2.04292 Si-O1 1.57192

Ba-2O2 2.81714 Sn-2O2 2.04719 Si-O1 1.69064

Ba-2O2 2.81755 Sn-2O2 2.04748 Si-2O2 1.56323



Table S5. The detailed information about atom 1(O2)-Ba- atom 3(O2) bond angle, atom 1 and atom 
3 represent O2 atoms located in different position around Ba atom. 

Angle Degrees Angle Degrees

1O(2)-Ba-2O(2) 60.063 1O(2)-Sn-2O(2) 91.009

1O(2)-Ba-3O(2) 104.187 1O(2)-Sn-3O(2) 91.126

1O(2)-Ba-4O(2) 158.451 1O(2)-Sn-4O(2) 177.082

1O(2)-Ba-5O(2) 104.192 1O(2)-Sn-5O(2) 91.118

1O(2)-Ba-6O(2) 94.488 1O(2-Sn-6O(2) 86.851

4O(2)-Ba-2O(2) 104.192 4O(2)-Sn-2O(2) 91.118

4O(2)-Ba-3O(2) 60.075 4O(2)-Sn-3O(2) 90.985

4O(2)-Ba-5O(2) 94.506 4O(2)-Sn-5O(2) 86.826

4O(2)-Ba-6O(2) 104.203 4O(2)-Sn-6O(2) 91.110

2O(2)-Ba-3O(2) 94.488 2O(2)-Sn-3O(2) 86.851

2O(2)-Ba-5O(2) 158.451 2O(2)-Sn-5O(2) 177.082

2O(2)-Ba-6O(2) 104.187 2O(2)-Sn-6O(2) 91.126

3O(2)-Ba-5O(2) 104.203 3O(2)-Sn-5O(2) 91.110

3O(2)-Ba-6O(2) 158.475 3O(2)-Sn-6O(2) 177.115

5O(2)-Ba-6O(2) 60.075 5O(2)-Sn-6O(2) 90.985



The detailed Ect calculations are shown as follows:

Zhang and Levine[3, 4] extended the theory on the basis of the theory developed by 

Phillips and Van Vechten (PV),[5, 6] which is suitable to the compounds with a complex 

structure. In this theory, the complicated crystals with molecular formula: ...𝐴 1
𝑎1𝐴 2

𝑎2

...  can be expressed by the following sub-formula: 𝐴 𝑖
𝑎𝑖𝐵

1
𝑏1𝐵 2

𝑏2 𝐵 𝑗
𝑏𝑗

        (2)

𝑁(𝐵𝑗 ‒ 𝐴𝑖) × 𝑎𝑖

𝑁
𝐶𝐴𝑖

𝐴𝑖𝑁(𝐴𝑖 ‒ 𝐵𝑗) × 𝑏𝑗

𝑁
𝐶𝐵𝑗

𝐵𝑗 = 𝐴 𝑖
𝑚𝑖

𝐵 𝑗
𝑛𝑗

Where                 ,       (3)
𝑚𝑖 =

𝑁(𝐵𝑗 ‒ 𝐴𝑖) × 𝑎𝑖

𝑁
𝐶𝐴𝑖

 𝑛𝑗 =
𝑁(𝐴𝑖 ‒ 𝐵𝑗) × 𝑏𝑗

𝑁
𝐶𝐵𝑗

The bond sub formula equation is given by

    (4)
𝐴 1

𝑎1𝐴 2
𝑎2……𝐴 𝑖

𝑎𝑖𝐵
1

𝑏1𝐵 2
𝑏2……𝐵 𝑗

𝑏𝑗 = ∑
𝑖,𝑗

𝐴 𝑖
𝑚𝑖

𝐵 𝑗
𝑛𝑗

where , show the different constituent elements or different sites of the 
𝐴 𝑖

𝑎𝑖
 𝐵 𝑗

𝑏𝑗
 

same element in the crystal formula, and ai, bj are the number of the corresponding 

elements.  is the number of  ions in the coordination group of a  ion, and 𝑁(𝐵𝑗 ‒ 𝐴𝑖) 𝐵𝑗 𝐴𝑖

 represents the nearest coordination number of the  ion. Therefore, the complex 
𝑁

𝐶𝐴𝑖 𝐴𝑖

crystal is decomposed into the sum of diverse binary crystals like . For any 
𝐴 𝑖

𝑚𝑖
,𝐵 𝑗

𝑛𝑗

binary AmBn, charge QA is the normal valence of the cation A, and QB is that obtained 

from . 
𝑄𝐵 =

𝑚𝑄𝐴

𝑛

According to PV[5] and Levine’s theory,[4] the total macroscopic linear 

susceptibility χ of crystals from the various types of bonds can be represented by the 



following equation:

   (5)
𝜒 = ∑

𝜇

𝐹𝜇𝜒𝜇 = ∑
𝜇

𝑁𝜇
𝑏𝜒𝜇

𝑏

   (6)𝜖𝜇 = 1 + 4𝜋𝜒𝜇

Where  is the crystal dielectric constant, obtained from the index of refraction n (𝜖

).  is the dielectric constant of a type chemical bond,  is the fraction of 𝜖 = 𝑛2 𝜖𝜇 𝜇 𝐹𝜇

bonds of type  composing the actual crystal,  is the susceptibility of a single bond 𝜇 𝜒𝜇
𝑏

of type , and  is the number of bonds per cubic centimeter.  is the total 𝜇 𝑁𝜇
𝑏 𝜒𝜇

macroscopic susceptibility which a crystal composed entirely of bonds of type would 𝜇 

have, which can be shown as:

   (7)𝜒𝜇 = (4𝜋) ‒ 1(ħΩ𝜇
𝑝)2/(𝐸𝜇

𝑔)2

Where  is the average energy gap for  type bonds (in eV),  is the plasma 𝐸𝜇
𝑔 𝜇 Ω𝜇

𝑝

frequency obtained from the number of valence electrons of type  per cubic centimeter 𝜇

, using the following equation:𝑁𝜇
𝑒

   (8)(Ω𝜇
𝑝)2 = (4𝜋(𝑁𝜇

𝑒) ∗ 𝑒2/𝑚)𝐷𝜇𝐴𝜇

Where  and  are correction factors, their expressions are:𝐷𝜇 𝐴𝜇

   (9)𝐷𝜇(𝐴,𝐵) = Δ𝜇
𝐴Δ𝜇

𝐵 ‒ (𝛿𝜇
𝐴𝛿𝜇

𝐵 ‒ 1)[(𝑍𝜇
𝐴) ∗ ‒ (𝑍𝜇

𝐵) ∗ ]2

   (10)   
𝐴𝜇 = 1 ‒ ( 𝐸𝜇

𝑔

4𝐸𝜇
𝐹

) + (
𝐸𝜇

𝑔

4𝐸𝜇
𝐹

)2/3

Where  and  are the numbers of effective valence electrons on the A (𝑍𝜇
𝐴) ∗ (𝑍𝜇

𝐵) ∗

and B atoms of the  bond,  and  are the periodic dependent constants[4]. The Fermi 𝜇 Δ 𝛿



energy  (in eV) is given in terms of the Fermi wave vector  by𝐸𝜇
𝐹 𝐸𝜇

𝐹

   (11)𝐸𝜇
𝐹 = (ħ𝐾𝜇

𝐹)2/2𝑚

   (12)(𝐾𝜇
𝐹)3 = 3𝜋2(𝑁𝜇

𝑒) ∗

Here,  is the effective valence electron density for the  bond per cubic (𝑁𝜇
𝑒) ∗

𝜇

centimeter and it is given by:

   (13)(𝑁𝜇
𝑒) ∗ = (𝑛𝜇

𝑒) ∗ /𝜈𝜇
𝑏

   (14)
(𝑛𝜇

𝑒) ∗ =
(𝑍𝜇

𝐴) ∗

𝑁 𝜇
𝐶𝐴

+
(𝑍𝜇

𝐵) ∗

𝑁 𝜇
𝐶𝐵

   (15)
𝜈𝜇

𝑏 = (𝑑𝜇)3/∑
𝜈

(𝑑𝜈)3𝑁𝜈
𝑏

Where,  is the number of effective valence electrons per  bond. The bond (𝑛𝜇
𝑒) ∗

𝜇

volume  (Å3) for the bonds of type  is proportional to , where  is the bond 𝜈𝜇
𝑏 𝜇 (𝑑𝜇)3 𝑑𝜇

distance (Å).  is the number of bonds of type  per cubic centimeter. The average 𝑁𝜈
𝑏 𝜈

energy gap  (eV) can be separated into homopolar energy  (eV) and heteropolar 𝐸𝜇
𝑔 𝐸𝜇

ℎ

energy  (eV) as shown in the equation below:𝐶𝜇

   (16)(𝐸𝜇
𝑔)2 = (𝐸𝜇

ℎ)2 + (𝐶𝜇)2

The covalency of any  type bonds is defined as:𝜇

   (17)𝑓𝜇
𝑐 = (𝐸𝜇

ℎ)2/(𝐸𝜇
𝑔)2

Where

   (18)𝐸𝜇
ℎ = 39.74/(𝑑𝜇)2.48



 (n > m) (eV)   (19)
𝐶𝜇 = 14.4𝑏𝜇exp ( ‒ 𝑘𝜇

𝑠 ∗ 𝑟𝜇
𝑜)[(𝑍𝜇

𝐴) ∗ ‒ ( 𝑛
𝑚)(𝑍𝜇

𝐵) ∗ ]/𝑟𝜇
𝑜

 (n ≤ m) (eV)   (20)
𝐶𝜇 = 14.4𝑏𝜇exp ( ‒ 𝑘𝜇

𝑠 ∗ 𝑟𝜇
𝑜)[(𝑚

𝑛 )(𝑍𝜇
𝐴) ∗ ‒ (𝑍𝜇

𝐵) ∗ ]/𝑟𝜇
𝑜

With

    (21)𝑟𝜇
𝑜 = 𝑑𝜇/2

   (22)
𝑘𝜇

𝑠 = (
4𝑘𝜇

𝐹

𝜋𝛼𝐵
)1/2

Here,  is the Thomas-Fermis screening wavenumber of valence electrons and 𝑘𝜇
𝑠

 is the Bohr radius.  is shown in the following equation:𝛼𝐵 𝑏𝜇

   (23)𝑏𝜇 = 𝛽(𝑁𝜇
𝐶)2

   (24)𝑁𝜇
𝐶 = 𝑚𝑁 𝜇

𝐶𝐴/(𝑚 + 𝑛) + 𝑛 𝑁 𝜇
𝐶𝐵/(𝑚 + 𝑛)

Where  depends on the crystal structure.𝑏𝜇

Once the dielectric constant of the crystal is known, the value of  can be deduced 𝛽

from the above equations. When the dielectric constant is unknown, it may also be 

estimated by using the  value of its isostructural crystals. The environmental factor 𝛽

designated by the symbol he can be expressed as:[6, 7]

   (25)
ℎ𝑒 = (∑

𝜇

𝑓𝜇
𝑐𝛼𝜇

𝑏𝑄𝜇
𝐵

2)1/2

Where  stands for the presented charge of the nearest anion in the chemical 𝑄𝜇
𝐵

bond, and  is the polarizability of the chemical bond volume in the  type of chemical 𝛼𝜇
𝑏 𝜇



bonds.

For the chemical bond of type , the polarizable coefficient  can be obtained 𝜇 𝛼𝜇
𝑜

from the Lorentz-Lorenz equation:

   (26)

𝜖𝜇 ‒ 1

𝜖𝜇 ‒ 2
= (4𝜋/3)𝛼𝜇

𝑜

Hence, the polarizability of the chemical bond volume (Å3) is given by

   (27)𝛼𝜇
𝑏 = 𝛼𝜇

𝑜𝜈𝜇
𝑏

By zhang’s analysis, the charge transition energy (Ect) could be obtained by the 

following empirical formula:

    (28)𝐸𝑐𝑡 = 𝐴 + 𝐵𝑒
‒ 𝑘ℎ𝑒

Where A=2.804, B=6.924, and k=1.256 for the Eu3+ ion. These constants only 

relate to the type of rare earth ion.
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