Supplementary material

STRUCTURAL PROPERTIES OF POSSIBLE INTERSTELLAR

VALENCE ANIONS OF THE SERIES HC_nN^- (*n*=3,5,7,9)

Stanka Jerosimić¹, Milan Milovanović¹, David Koprivica², Roland Wester³, Franco Gianturco³

¹ Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, PAC 105305, 11158 Belgrade, Serbia

² Department of Chemical and Biological Physics, Weizmann Institute, Rehovot, Israel

³ Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020

Innsbruck, Austria

Table S1. Additional computational data for rotational spectroscopy: Rotational constants, dipole moments, quartic centrifugal distortion constants for the Hund's case (*b*) in the asymmetrically reduced Hamiltonian and symmetrically reduced Hamiltonian forms, and the spin rotation interaction constants. Equilibrium geometry is obtained with the SOGGA11-X DFT functional in the aug-cc-pVTZ basis set. **3.a.1**, **5.a.1** and **7.a.1** isomers are open-shell systems and have ²A' ground electronic states; all molecules are planar asymmetric tops. Representation: III¹, Iy < Ix < Iz.

Table S2. Data for configurational isomers of HC_3N^- computed by USOGGA11-X/aug-ccpVTZ method: The energies and dipole moments of the neutral HC_3N at the geometry of the corresponding anion are shown in parenthesis below the Electronic energy and Dipole moment values for anions; IR intensities are presented in parenthesis; Equilibrium rotational constants for a molecule in standard orientation are in GHz; Vertical detachment energy (VDE) is without ZPVE correction.

Table S3. Equilibrium distances, harmonic frequencies, dipole moment (μ), and equilibrium rotational constant (B_e) of the HC₃N neutral molecule calculated by different DFT functionals, and compared to RCCSD(T)-F12 results. Note: the lowest RMS deviations (root-mean-square deviations) is marked yellow.

Table S4. Data for configurational isomers of HC_5N^- computed by USOGGA-11X/aug-ccpVTZ method: The energies and dipole moments of the neutral HC_3N at the geometry of the corresponding anion are shown in parenthesis below the Electronic energy and Dipole moment values for anions; IR intensities are presented in parenthesis; Equilibrium rotational constants for a molecule in standard orientation are in GHz; Vertical detachment energy (VDE) is without ZPVE correction. **Table S5.** Equilibrium geometry of the neutral HC₇N computed with different DFT functionals and compared to MP2-F12 and CCSD(T)-F12 values, with the root-mean-square deviations (from experimental data) indicated in the last row.

Table S6. For the neutral linear molecules: experimental rotational constants in the ground electronic state (B_{exp}), equilibrium rotational constants computed by SOGGA11-X/aug-cc-pVTZ (B_e), experimental electric dipole moment in the ground state (μ_{exp}), computed equilibrium dipole moment μ_e and scaling factors obtained by dividing experimental to computed values.

Table S7. Data for configurational isomers of HC_7N^- computed by USOGGA-11X/aug-ccpVTZ method: The energies and dipole moments of the neutral HC_3N at the geometry of the corresponding anion are shown in parenthesis below the Electronic energy and Dipole moment values for anions; IR intensities are presented in parenthesis; Equilibrium rotational constants for a molecule in standard orientation are in GHz; Vertical detachment energy (VDE) is without ZPVE correction.

Table S8. Equilibrium geometry of the neutral HC₉N computed with different DFT functionals and compared to MP2-F12 values, with the root-mean-square errors (from experimental data) indicated in the last row.

Table S9. Data for configurational isomers of HC_9N^- computed by USOGGA-11X/aug-ccpVTZ method: The energies and dipole moments of the neutral HC_3N at the geometry of the corresponding anion are shown in parenthesis below the Electronic energy and Dipole moment values for anions; IR intensities are presented in parenthesis; Equilibrium rotational constants for a molecule in standard orientation are in GHz; Vertical detachment energy (VDE) is without ZPVE correction.

Figure S1. Graphical representation of the computed IR spectra (SOGGA11-X/aug-cc-pVTZ) of the lowest-energy isomers **3.a.1**, **5.a.1**, **7.a.1**, and **9.a.1**, from the top to the bottom, obtained with the Gaussview program.

Table S1. Additional computational data for rotational spectroscopy: Rotational constants, dipole moments, quartic centrifugal distortion constants for the Hund's case (*b*) in the asymmetrically reduced Hamiltonian and symmetrically reduced Hamiltonian forms, and the spin rotation interaction constants. Equilibrium geometry is obtained with the SOGGA11-X DFT functional in the aug-cc-pVTZ basis set. **3.a.1**, **5.a.1** and **7.a.1** isomers are open-shell systems and have ²A' ground electronic states; all molecules are planar asymmetric tops. Representation: III¹, Iy < Ix < Iz.

3.a.1	Principal inertia moments (amu-bohr**2): $I_{22} = 0.(72007D + 01) I_{22} I_{22} = 0.280771D + 02$
	1aa = 0.07309/D+01100= 0.383040D+03100= 0.3897/1D+03
	Rotational constants (MHZ): 268125.05 4/11.62 4630.26
	Dipole moment (Debye):
	-0.6111638 0.9135246 0.0000000 Tot= 1.0991125
	Quartic Centrifugal Distortion Constants (MHz)
	(Asymmetrically reduced) (Symmetrically reduced)
	$DELTA N = 0.001129976 \qquad D N = 0.000985276$
	DELTA K = 211.955436638 D K = 211.954713139
	DELTA NK = 3.853870885 D NK = 3.854739084
	delta N = 0.000014775 d 1 = -0.000014775
	delta K = -1.696736261 d 2 = -0.000072350
	electronic spin - molecular rotation tensor [epsilon] (MHZ):
	aa = 2975.0414 $ba = -623.8614$ $ca = 0.0000$
	ab= 1.8923 bb= 0.9828 cb= 0.0000
	ac= 0.0000 bc= 0.0000 cc= -8.3242
	nuclear spin - molecular rotation tensor [C] (MHz):
	1 H aa= 0.0498 ba= -0.0301 ca= 0.0000
	$ab = -0.0003 \ bb = -0.0002 \ cb = 0.0000$
	ac= 0.0000 bc= 0.0000 cc= -0.0004
	^{14}N aa= 0.0594 ba= -0.0053 ca= 0.0000
	$ab= 0.0002 \ bb= 0.0009 \ cb= 0.0000$
	ac= 0.0000 bc= 0.0000 cc= 0.0007
5.a.1	Principal inertia moments (amu-bohr**2):
	Iaa = 0.194057D + 01 Ibb = 0.135371D + 04 Icc = 0.135565D + 04
	Rotational constants (MHZ): 930007.6997519 1333.1791105 1331.2707152
	Dipole moment (Debye):
	1.0805643 1.0644003 0.0000000 $1 ot = 1.516/621$
	Quartic Centrifugal Distortion Constants (MHz)
	(Asymmetrically reduced) (Symmetrically reduced)
	DELTA N = 0.000026/41 D N = 0.000026/27
	DELTA K = 22330.00001/2/9 D K = 22330.00001/207
	$DELTA NK = -0.320555755 D NK = -0.320555009$ $d_2 t_2 N = -0.000000220 \qquad d_1 = -0.000000220$
	define $N = -0.000000230$ d $I = 0.000000230$
	$delta K = -0.023939319 \qquad d 2 = -0.000000007$
	electronic spin - molecular rotation tensor [epsilon] (MHZ):
	aa = 26329.4277 $ba = 2293.6997$ $ca = 0.0000$
	ab= 2.5358 bb= 0.4804 cb= 0.0000
	ac= 0.0000 bc= 0.0000 cc= -3.0876
	nuclear spin - molecular rotation tensor [C] (MHz):
	¹⁴ N
	aa = 0.4681 ba = -0.0064 ca = 0.0000
	ab = 0.0000 bb = 0.0003 cb = 0.0000 cb =
	ac= 0.0000 bc= 0.0000 cc= 0.0002
	¹ H
	aa = 0.2/// ba = 0.2099 ca = 0.0000
	ab= 0.0002 bb= 0.0000 cb= 0.0000
	ac= 0.0000 bc= 0.0000 cc= -0.0001

7.a.1	Principal inertia moments (amu-bohr**2):
	Iaa = 0.245260D+01 Ibb= 0.319013D+04 Icc= 0.319259D+04
	Rotational constants (MHZ):
	735847.6770507 565.7258132 565.2912126
	Dipole moment (Debye):
	2.7204488 0.8369903 0.0000000 Tot= 2.8462949
	Quartic Centrifugal Distortion Constants (MHz)
	(Asymmetrically reduced) (Symmetrically reduced)
	DELTA N = 0.000005841 D N = 0.000005842
	DELTA K =***********************************
	DELTA NK = -2.338333500 D NK = -2.338333504
	delta N = -0.000000386 d 1 = 0.000000386
	delta K = 0.001859515 d 2 = 0.000000000
	electronic spin - molecular rotation tensor [epsilon] (MHZ):
	aa = 50163.5063 $ba = 3623.0997$ $ca = 0.0000$
	$ab= 1.1371 \ bb= 0.2133 \ cb= 0.0000$
	ac= 0.0000 bc= 0.0000 cc= -1.2740
	nuclear spin - molecular rotation tensor [C] (MHz):
	¹ H
	aa = 0.5499 ba = 0.1990 ca = 0.0000
	$ab = 0.0001 \ bb = 0.0000 \ cb = 0.0000$
	ac= 0.0000 bc= 0.0000 cc= -0.0001
	¹⁴ N
	aa = 0.7036 $ba = 0.0455$ $ca = 0.0000$
	$ab = 0.0000 \ bb = 0.0001 \ cb = 0.0000$
	ac= 0.0000 bc= 0.0000 cc= 0.0001

Table S2. Data for configurational isomers of HC_3N^- computed by USOGGA11-X/aug-cc-pVTZ method: The energies and dipole moments of the neutral HC_3N at the geometry of the corresponding anion are shown in parenthesis below the Electronic energy and Dipole moment values for anions; IR intensities are presented in parenthesis; Equilibrium rotational constants for a molecule in standard orientation are in GHz; Vertical detachment energy (VDE) is without ZPVE correction.

Isomer	Electronic	Frequencies/cm-1	ZPVE	Dipole	Rotational	VDE/eV
	energy/ a.u.	(IR intensities,	Hartree	moment/D	constants/	
		kmmol ⁻¹)	/particle		GHz	
3 a 1	-160 5730765	168(6) 349(5) 526(25)	0.024070	1 0001	268 1250546	1 36
5.4.1	(-169.5759705)	682(42) $874(65)$	0.024070	(3.4160)	4 7116247	1.50
	(-109.3238030)	933(114) 1812(12)		(3.4100)	4.7110247	
		2196(513) $3024(139)$			4.0302375	
3 a 2	-169 5618088	256(34) 441(0) 598(10)	0.024902	3 5064	63 3253834	2.07
0.0.2	(-169.4857583)	707(27) 948(3) 1213(6)	0.021902	(2.9972)	5 4 5 4 0 9 3 7	2.07
	(10).1007505)	1503(50) 2294(266)		(2.9972)	5 0215935	
		2971(123).			0.0210900	
3.a.3	-169.5365044	238(1), 241(2), 467(7),	0.024695	5.4460	271.1028366	2.06
	(-169.4607512)	691(5), 920(7),		(4.5629)	4.7056787	
		1179(154), 1737(257),			4.6253932	
		1933(593), 3432(3)				
3.a.4	-169.5333130	214(10), 261(0), 530(22),	0.024500	5.1367	82.7889510	4.95
	(-169.3514709)	900(0), 963(60), 1237(5),		(4.8395)	5.2032434	
		1644(184), 2085(317),			4.8955599	
		2921(90)				
3.a.5	-169.5287788	242(8), 326(1), 517(60),	0.023956	0.8641	158.7886398	1.54
	(-169.4722559)	701(53), 856(42),		(2.6731)	5.3114571	
		937(110), 1714(12), 2117(22), 2117(22), 2117(22)			5.1395402	
2(1(0.521471(211/(22), 3105(62).	0.024516	2 7529	(()(10204	2.12
<i>3.a.</i> 0	-169.5214/16	235(22), 352(0), 552(19), 707(24), 878(20)	0.024516	3.7528	66.3618304 5 8150020	2.13
	(-109.4432304)	107(24), 878(20), 1262(11), 1522(2)		(2.3099)	5.8150039	
		1202(11), 1322(3), 2218(11), 2026(104)			5.5405119	
3 a 7	-169 5206422	417(47) $449(66)$	0.024765	2 2094	43 5501245	2 52
J.u. /	(-169.4282000)	564(14) $645(107)$	0.024703	(1 1127)	8 1190889	2.32
	(10):1202000)	904(22) 1107(189)		(1.1127)	6 8432885	
		1527(107) 1776(737)			0.0152005	
		3481(23).				
3.a.8	-169.5001549	211(29), 271(2), 421(30),	0.022955	5.2929	337.6497526	2.40
	(-169.4118849)	588(12), 931(114),		(5.3463)	5.0583064	
		1053(246), 1782(110),			4.9836468	
		1968(448), 2851(264).				
3.a.9	-169.4604128	214(14), 293(3), 554(26),	0.025258	5.3993	85.0556633	3.35
	(-169.3372559)	725(18), 939(22),		(6.6346)	5.5224464	
		1376(2), 1518(4),			5.1857490	
		2097(110), 3372(2).				
3.a.10	-169.4572170	185(18), 417(2), 653(52),	0.022423	3.4153	36.0261018	2.11
	(-169.3797967)	734(97), 816(15),		(4.0113)	8.5049961	
		1007(48), 1358(100),			7.0075843	
		1830(56), 2844(236).				

Table S3. Equilibrium distances, harmonic frequencies, dipole moment (μ), and equilibrium rotational constant (B_e) of the linear HC₃N neutral molecule calculated by different DFT functionals, and compared to RCCSD(T)-F12 results. Note: the lowest RMS deviations (root-mean-square deviations) is marked.

HC ₃ N	Exp. ¹	SOGGA11	SOGGA11	M06-2X	M06-2X	B3LYP	B3LYP	RCCSD(T)
		-X	-X					-F12
		aug-cc-	aug-cc-	aug-cc-	aug-cc-	aug-cc-	aug-cc-	cc-pVTZ-
		pVTZ	pVQZ	pVTZ	pVQZ	pVTZ	pVQZ	F12
H-C1	1.058	1.0631	1.0636	1.064	1.0632	1.0625	1.0622	1.0640
C1-C2	1.205	1.1993	1.199	1.196	1.1953	1.2007	1.2	1.2080
C2-C3	1.378	1.3769	1.3776	1.38	1.38	1.3684	1.3683	1.3803
C3-N	1.159	1.1525	1.152	1.1486	1.1477	1.1551	1.1543	1.1624
RMSD		0.0050	0.0054	0.0076	0.0080	0.0060	0.0063	0.0039
$\nu_7(\pi)$	222 ²	246(0)	242(0)	240(0)	241(0)	241(0)	241(0)	221
$\nu_6(\pi)$	499 ²	558(7)	553(7)	555(9)	555(9)	546(7)	545(7)	496
$\nu_5(\pi)$	663 ²	739(39)	736(39)	748(37)	754(36)	706(39)	706(38)	676
$\nu_4(\sigma)$	878 ²	910(0)	909(0)	900(0)	900(0)	903(0)	902(0)	879
$\nu_3(\sigma)$	2079	2219(0)	2219(1)	2226(1)	2225(1)	2173(0)	2171(0)	2113
$\nu_2(\sigma)$	2274	2437(31)	2435(28)	2449(27)	2447(26)	2367(25)	2365(24)	2318
ν ₁ (σ) (CH	3327	3505(84)	3502(85)	3475(83)	3478(80)	3460(86)	3459(85)	3452
stretch.)								
RMSD		113	111	110	111	76	75	52
μ / D	-3.72 ^{3,4}	-3.9154	-3.9049	-3.8973	-3.8717	-3.8872	-3.8855	-
B _e / GHz	B ₀ =4.549 ²	4.579	4.578	4.585	4.589	4.595	4.598	4.527
$B_{e} - B_{0}/$		0.030	0.029	0.036	0.040	0.046	0.049	-0.022
GHz								

Table S4. Data for configurational isomers of HC_5N^- computed by USOGGA-11X/aug-cc-pVTZ method: The energies and dipole moments of the neutral HC_3N at the geometry of the corresponding anion are shown in parenthesis below the Electronic energy and Dipole moment values for anions; IR intensities are presented in parenthesis; Equilibrium rotational constants for a molecule in standard orientation are in GHz; Vertical detachment energy (VDE) is without ZPVE correction.

Isomer	Electronic	Frequencies/cm ⁻¹	ZPVE/a.u.	Dipole	Rotational	VDE/eV
	energy/ a.u.	(IR intensities, kmmol ⁻¹)		moment/D	constants/	
					GHz	
5.a.1	-245.7499338	46(1), 118(6), 237(3), 288(7),	0.033700	1.5168	930.0076997	1.64
	(-245.6898016)	390(8), 478(7), 558(0),		(3.7787)	1.3331791	
		591(9), 635(96), 691(472),			1.3312707	
		1246(45), 1914(185),				
		2149(317), 2261(1050),				
5 - 2	245 7446502	3192(89).	0.0252(2	4.09.42	20 4077114	2.16
5.4.2	-243.7440393 (-245.6286166)	91(12), 1/3(2), 2/4(2), 379(1), 409(6), 553(1)	0.055202	(2 1427)	1 5358206	5.10
	(243.0200100)	560(4) 724(37) 907(4)		(2.1727)	1 4783372	
		1073(5), 1309(7), 1679(50).			1.1703372	
		1915(898), 2325(285),				
		3105(39),				
5.a.3	-245.7188249	48(2), 55(0), 387(7), 451(2),	0.034281	3.7467	37.0817157	2.62
	(-245.6226788)	468(8), 550(14), 599(5),		(3.9641)	1.7600515	
		754(22), 865(1), 990(14),			1.6802977	
		1232(14), 1520(7), 1836(95),				
5 - 1	245 71(0701	20/8(5/5), 3216(51),	0.024672	5.9690	56 5270019	4.07
5.4.4	-245./109/01	80(21), 118(1), 233(0), 280(0) 466(2) 500(7)	0.034073	5.8080	1 4740658	4.8/
	(-245.5580592)	544(8) $847(27)$ $851(1)$		(3.2093)	1 4374651	
		1097(91), 1303(23).			1.1571051	
		1734(402), 2036(1217),				
		2107(42), 3025(35)				
5.a.5	-245.7163541	113(21), 128(0), 256(36),	0.035203	4.4864	45.2580981	2.29
	(-245.6321935)	427(2), 525(28), 548(10),			1.4881196	
		578(11), 704(21), 729(3),			1.4407468	
		1201(5), 1225(13),				
		14/1(227), 2221(237), 2355(1472), 2072(111)				
5 a 6	-245 7119245	145(2) 232(8) 269(33)	0.035074	4 6601	7 5457667	2.56
5.0.0	(-245.6176649)	438(9), 500(24), 532(69),	0.055074	4.0001	2.8496157	2.30
		625(2), 636(0), 656(45),			2.0684699	
		746(1), 1140(8), 1455(58),				
		2188(201), 2316(187),				
		3517(69).				
5.a.7	-245.7078368	107(6), 111(6), 215(7),	0.033657	7.0646	614.8240410	2.33
	(-245.6221837)	254(7), 320(2), 403(0),		5.6373	1.3398314	
		550(6), 591(1), 653(1),			1.3369180	
		1129(246), 1237(97), 1801(506), 1002(1140)				
		2087(597) $3415(28)$				
5.a.8	-245,7041281	95(12), 175(2), 250(1).	0.034899	5.5766	44,1609036	3.11
	(-245.5899320)	344(1), 407(5), 498(0).	0.02.033	(2.0917)	1.5931420	0.11
		511(4), 719(29), 915(15),			1.5376693	
		1072(6), 1333(35), 1693(2),				
		1936(578), 2230(39),				
		3140(36)				
5.a.9	-245.7000178	102(0), 192(12), 262(80),	0.033633	1.3045	86.2145960	1.85
	(-245.6319390)	534(31), 411(27), 457(196),		(3.2803)	1.4880304	
1	1	J+J(J), JU+(Z/J), J/4(JJ),	1	1	1.402/033	

		739(22), 1174(21), 1864(240), 2109(47), 2135(25), 3304(11).				
5. <i>a</i> .10	-245.6973878 (-245.4857434)	101(9), 127(0), 241(4), 269(8), 465(7), 544(8), 555(6), 735(105), 887(2), 1210(0), 1245(8), 1659(398), 2062(78), 2272(1745), 2967(79).	0.034943	7.6437	67.3264053 1.4342482 1.4043318	5.76

Table S5. Equilibrium geometry of the linear neutral HC_7N computed with different DFT functionals and compared to MP2-F12 and CCSD(T)-F12 values, with the root-mean-square deviations (from experimental data) indicated in the last row.

LIC N		SOGGA11X	SOGGA11X	B3LYP	M062X C00	MD2 C00	RMP2-f12	RMP2-f12	RCCSD(T)-
		009	009	009	M002A G09	MP2 009	Molpro	Molpro	112
	exp ⁵	aug-cc-pvtz	aug-cc-pvqz	aug-cc-pvtz	aug-cc-pvtz	aug-cc-pvtz	cc-pvdz-F12	cc-pvtz-F12	cc-pvtz-F12
HC1	1.0570	1.0628	1.0632	1.0621	1.0637	1.0633	1.0625	1.0623	1.0639
C1C2	1.2101	1.2046	1.2043	1.2069	1.2008	1.2238	1.2195	1.2193	1.2124
C2C3	1.3610	1.3616	1.3623	1.3513	1.3657	1.3560	1.3538	1.3532	1.3673
C3C4	1.2141	1.2123	1.2121	1.2171	1.2079	1.2344	1.2303	1.2302	1.2192
C4C5	1.3616	1.3551	1.3559	1.3440	1.3599	1.3482	1.3460	1.3454	1.3619
C5C6	1.2149	1.2101	1.2099	1.2149	1.2057	1.2328	1.2284	1.2283	1.2172
C6C7	1.3657	1.3683	1.3692	1.3582	1.3724	1.3612	1.3597	1.3591	1.3736
C7N	1.1611	1.1549	1.1543	1.1584	1.1506	1.1814	1.1772	1.1769	1.1643
		0.0047	0.0049	0.0080	0.0074	0.0141	0.0120	0.0121	0.0049
RMSD				5.0000		5.0111	0.0120	0.0121	

Table S6. For the neutral linear molecules: experimental rotational constants in the ground electronic state (B_{exp}), equilibrium rotational constants computed by SOGGA11-X/aug-cc-pVTZ (B_e), experimental electric dipole moment in the ground state (μ_{exp}), computed equilibrium dipole moment μ_e and scaling factors obtained by dividing experimental to computed values.

	B _{exp} / GHz	B _e / GHz	Scaling f	M_{exp} / D ^{3,4}	μ _e / D	Scaling f
HC ₃ N	4.54906 ^{1,4}	4.5789959	0.99346	-3.72	-3.9154	0.9501
HC ₅ N	1.331331 ^{1,4}	1.3378679	0.99511	-4.33	-4.6499	0.9312
HC ₇ N	0.564001125	0.5665431	0.99551	-5.0	-5.2761	0.9477
HC ₉ N	0.290518325	0.2917129	0.99590	-5.6	-5.8074	0.9643
Average			0.99500			0.9483
Scaling factor						

Table S7. Data for configurational isomers of HC_7N^- computed by USOGGA-11X/aug-cc-pVTZ method: The energies and dipole moments of the neutral HC_3N at the geometry of the corresponding anion are shown in parenthesis below the Electronic energy and Dipole moment values for anions; IR intensities are presented in parenthesis; Equilibrium rotational constants for a molecule in standard orientation are in GHz; Vertical detachment energy (VDE) is without ZPVE correction.

			1			1
Isomer	Electronic	Frequencies/cm ⁻¹	ZPVE/a.u.	Dipole	Rotational	VDE
	energy / a.u.	(IR intensities, kmmol ⁻¹)		moment/D	constants/	(eV)
7 a 1	321 0204174	51(1) 68(1) 120(1) 177(6)	0.043851	2 8/63	0HZ 735 8476771	1.85
2 <u>A'</u>	(-321.9204174)	280(6) $309(0)$ $383(1060)$	0.043831	(4 9228)	0 5657258	1.05
	(521.0525707)	427(1) $440(3)$ $490(10)$		(1.9220)	0.5652912	
		501(55), 526(6), 573(0),			0.0002312	
		622(4), 961(32), 1407(12),				
		1967(492), 2109(784),				
		2206(300), 2257(1850),				
		3375(2)				
Linear	-321.9198414	-238(99), 47(0), 69(1), 110(2),	0.044924	4.2752	0.0000000	1.55
(TS)	(-321.8627376)	178(4), 262(3), 318(0),		(5.5868)	0.5635584	
		439(2), 456(1), 481(10), 402(0), 528(2), 580(4)			0.5635584	
		493(0), 528(2), 580(4), 642(35), 652(12), 958(11)				
		1408(1) 2012(12), 938(11),				
		2117(1533) $2183(985)$				
		2269(860), 3519(201)				
7.a.2	-321.9118583	50(6), 102(1), 139(4), 246(8),	0.045174	6.7546	18.5073504	3.39
	(-321.7871560)	284(9), 372(0), 415(1),		(3.3132)	0.6502214	
		442(1), 502(2), 504(3),			0.6281525	
		560(2), 700(33), 740(5),				
		988(1), 1200(63), 1370(11),				
		1750(618), 1933(2066),				
		2047(43), 2334(202), 2140(26)				
7 a 3	-321 8968516	56(11) 128(0) 149(0)	0.045537	6 5602	18 1169667	3.28
7.0.5	(-321.7764074)	174(1), 271(8), 375(6).	0.045557	(2.6882)	0.6496943	5.20
	(405(5), 481(7), 520(3),		(0.6272021	
		545(8), 578(7), 743(33),				
		767(1), 954(6), 1241(54),				
		1333(8), 1658(203),				
		1900(1809), 2246(201),				
7 4	221 0055100	2372(1480), 3094(35)	0.044652	(((15	21.0(42120	4 47
7.a.4	-321.8855100	55(15), 88(0), 122(3), 202(4), 256(1), 272(0), 402(2)	0.044653	6.6615	21.9643139	4.47
	(-321.7210800)	230(1), 272(0), 402(2), 470(2), 491(8), 503(2)		(3.9299)	0.0327802	
		533(11), 697(13), 852(2),			0.0150005	
		1006(80), 1185(62),				
		1379(100), 1812(676),				
		1930(2473), 2085(344),				
		2197(217), 3063(25)				
7.a.5	-321.8820541	152(6), 184(3), 346(67),	0.048377	2.3026	7.4543806	5.01
	(-321.6979561)	430(0), 440(0), 585(10),		(3.8358)	1.6113618	
		(3) (3) , (40) (10) , (60) (0) , (11)			1.3249554	
		1060(1) $110(2)$, $630(14)$, $889(3)$, $1060(1)$ $1100(2)$ $1207(2)$				
		1330(3) $1361(17)$ $1429(57)$				
		1658(250), 2350(191)				
		3177(41)				
7.a.6	-321.8782000	51(12), 109(0), 140(0),	0.045014	8.5330	29.7238548	5.55
	(-321.6742457)	153(0), 244(7), 284(9),		(8.1112)	0.6215625	

		403(1), 483(5), 532(6), 536(11), 560(3), 750(131), 832(3), 924(36), 1239(3), 1350(37), 1734(956), 2058(21), 2067(1311), 2262(2422), 3046(30)			0.6088311	
7.a.7	-321.8738500 (-321.7676268)	64(11), 66(5), 156(5), 172(6), 267(2), 297(7), 344(8), 387(0), 463(0), 502(4), 509(0), 570(2), 584(6), 969(112), 1099(407), 1403(103), 1792(2538), 1875(2817), 2042(321), 2185(384), 3459(6)	0.043749	8.8345 (7.3789)	642.5587377 0.5684205 0.5679183	2.89
7. <i>a</i> .8	-321.8734180 (-321.7832234)	68(13), 77(0), 156(39), 186(4), 260(57), 430(1), 475(38), 526(3), 533(1), 567(9), 579(19), 605(23), 709(20), 988(11), 1197(9), 1366(19), 1459(379), 2177(621), 2285(2988), 2354(1108), 2993(104)	0.045537	5.5889 (4.7078)	38.2040069 0.6086625 0.5991174	2.45
7.a.9	-321.8709563 (-321.8011956)	60(0), 101(0), 133(2), 210(84), 249(4), 282(17), 343(4), 396(9), 446(30), 451(5), 502(1), 558(2), 587(120), 606(51), 943(46), 1346(13), 1936(13), 2108(702), 2130(77), 2164(586), 3518(193)	0.043439	3.8188 (4.7890)	67.4975227 0.6074858 0.6020672	1.90
7.a.10	-321.87173830 (-321.7488965)	44(5), 101(1), 141(5), 246(6), 246(9), 343(0), 367(1), 453(1), 460(2), 469(1), 545(2), 707(24), 738(14), 985(46), 1221(30), 1378(17), 1770(291), 1966(1610), 2041(7), 2229(107), 3171(23)	0.044699	7.5768 (3.6680)	22.8030193 0.6560032 0.6376589	3.34

Table S8. Equilibrium geometry of the neutral linear HC₉N computed with different DFT functionals and compared to MP2-F12 values, with the root-mean-square errors (from experimental data) indicated in the last row.

HC ₉ N		SOGGA11-X G09	B3LYP G09	M062X G09	RMP2-f12 Molpro	RMP2-f12 Molpro
	exp ⁵	aug-cc-pvtz	aug-cc-pvtz	aug-cc-pvtz	cc-pvdz-F12	cc-pvtz-F12
HC1	1.057	1.0627	1.0620	1.0636	1.0624	1.0623
C1C2	1.211	1.2050	1.2076	1.2011	1.2203	1.2202
C2C3	1.360	1.3608	1.3499	1.3653	1.3522	1.3515
C3C4	1.217	1.2139	1.2192	1.2093	1.2329	1.2328
C4C5	1.350	1.3518	1.3393	1.3570	1.3406	1.3400
C5C6	1.229	1.2154	1.2214	1.2106	1.2355	1.2354
C6C7	1.349	1.3528	1.3404	1.3580	1.3418	1.3411
C7C8	1.217	1.2111	1.2164	1.2064	1.2303	1.2303
C8C9	1.366	1.3680	1.3573	1.3723	1.3586	1.3580
C9N	1.161	1.1550	1.1587	1.1507	1.1778	1.1774
RMSD		0.0060	0.0069	0.0098	0.0106	0.0107

Table S9. Data for configurational isomers of HC_9N^- computed by USOGGA-11X/aug-cc-pVTZ method: The energies and dipole moments of the neutral HC_3N at the geometry of the corresponding anion are shown in parenthesis below the Electronic energy and Dipole moment values for anions; IR intensities are presented in parenthesis; Equilibrium rotational constants for a molecule in standard orientation are in GHz; Vertical detachment energy (VDE) is without ZPVE correction.

T	Electronic	Frequencies/cm ⁻¹	ZPVE/a.u.	Dipole	Rotational	VDE
Isomer	energy / <i>a.u.</i>	(IR intensities, kmmol ⁻¹)		moment/D	GHz	(eV)
9.a.1 ² ∏	-398.0887116 (-398.0158839)	37(0), 42(0), 86(2), 116(3), 154(0), 213(0), 289(78), 313(2), 329(3), 399(0), 455(7), 477(0), 496(11), 508(0), 562(3), 615(7), 638(43), 661(0), 780(7), 784(0), 1141(1), 1490(11), 2029(237), 2131(3172), 2148(1176), 2208(316), 2259(1641), 3513(307)	0.056666	5.2204 (6.2309)	0.000000 0.2908698 0.2908698	1.98
9.a.2	-398.0733457 (-397.9361982)	39(6), 61(1), 93(2), 157(9), 191(6), 267(0), 299(2), 369(2), 420(1), 437(6), 462(1), 481(1), 493(0), 539(2), 598(3), 651(12), 703(32), 923(30), 1054(58), 1279(18), 1432(120), 1796(1007), 1825(4615), 2041(84), 2151(118), 2340(310), 3164(14)	0.055283	8.1795 (4.2012)	14.5413787 0.3251047 0.3179952	3.73
9.a.3	-398.0628964 (-397.9354130)	28(5), 96(1), 109(1), 131(0), 158(7), 244(8), 279(6), 370(1), 402(5), 430(0), 447(5), 483(0), 536(10), 556(2), 571(7), 707(29), 723(4), 763(3), 1152(26), 1246(85), 1394(130), 1727(1259), 1915(3293), 2045(173), 2254(166), 2380(1467), 3133(24)	0.055312	8.3776 (3.7359)	6.1346263 0.3566336 0.3370400	3.47
9.a.4	-398.0519849 (-397.9281035)	36(10), 76(0), 94(1), 165(0), 186(7), 190(7), 277(7), 376(3), 401(7), 433(10), 498(1), 534(2), 536(3), 575(8), 601(5), 645(1), 746(33), 911(2), 1048(87), 1291(5), 1403(39), 1645(439), 1888(3324), 2202(402), 2300(2973), 2367(937), 3101(32)	0.055872	8.2715 (3.1992)	12.4659879 0.3265952 0.3182572	3.37
9.a.5	-398.0481590 (-397.8844644)	$\begin{array}{l} 41(11), 59(0), 95(4), 144(5), \\ 176(4), 237(0), 274(0), 277(0), \\ 392(2), 433(0), 492(3), 510(5), \\ 534(4), 567(2), 611(8), \\ 620(20), 854(3), 901(6), \\ 1086(161), 1261(23), \\ 1431(308), 1804(5546), \\ 1836(88), 2071(683), \\ 2131(35), 2264(471), 3089(20) \end{array}$	0.055107	7.4413 (6.1690)	17.8006311 0.3173541 0.3117953	4.45
9.a.6	-398.0455931	40(5), 84(4), 89(3), 154(14),	0.055229	8.0203	1.6383052	3.51

	(-397.9164872)	185(1), 264(1), 283(3), 386(6), 407(0), 494(13), 510(0), 517(1), 524(0), 553(3), 586(57), 611(2), 641(4), 653(46), 932(7), 1117(4), 1298(9), 1633(60), 1904(1396), 2178(17), 2323(634), 2353(218), 3522(151)		(3.5184)	0.7690245 0.5233587	
9.a.7	-398.0446038 (-397.8622866)	31(9), 92(0), 96(1), 137(0), 159(3), 215(6), 255(2), 285(7), 376(4), 432(0), 490(7), 502(0), 529(5), 533(11), 558(5), 691(10), 772(169), 830(6), 1136(24), 1248(19), 1427(250), 1808(1843), 1920(2829), 2049(169), 2203(230), 2251(3136), 3087(20)	0.054931	9.5948 (9.5265)	7.7703712 0.3418522 0.3274464	4.96
9a.8	-398.0466082 (-397.8989631)	116(2), 118(3), 180(4), 206(3), 367(12), 376(8), 478(11), 495(5), 526(2), 538(10), 591(0), 615(25), 624(49), 638(0), 675(40), 725(1), 727(12), 1050(49), 1181(20), 1237(7), 1281(37), 1364(20), 1485(94), 1751(358), 2220(59), 2358(138), 3522(71)	0.057968	2.7137 (1.6599)	2.1657542 1.4616477 0.8726824	4.02
9.a.9	-398.0401376 (-397.9127957)	44(9), 77(6), 80(1), 157(1), 186(4), 255(6), 277(2), 389(3), 401(1), 450(21), 503(1), 543(9), 548(11), 571(62), 592(12), 601(2), 643(0), 696(35), 924(1), 1119(9), 1310(38), 1629(80), 1899(1655), 2209(168), 2259(119), 2383(1302), 3523(89)	0.055287	6.4803 (3.4229)	2.2086075 0.6427907 0.4978864	3.47
9.a.10.	-398.0382616 (-397.9608718)	39(0), 61(0), 96(8), 160(2), 166(16), 281(0), 298(31), 342(7), 370(69), 387(24), 414(0), 449(8), 476(202), 478(5), 482(0), 537(0), 598(3), 625(47), 799(87), 1128(4), 1465(3), 1982(422), 2111(133), 2130(27), 2149(2202), 2188(447), 3522(299)	0.054065	4.5855 (4.8895)	73.5971853 0.3042632 0.3030105	2.11

Figure S1. Graphical representation of the computed IR spectra (SOGGA11-X/aug-cc-pVTZ) of the lowest-energy isomers **3.a.1**, **5.a.1**, **7.a.1**, and **9.a.1**, from the top to the bottom, obtained with the Gaussview program.

REFERENCES:

- (1) Herrera, O. M.; Bruns, R. E.; Neto, B. B. Similarity Transference of Molecular Parameters. II. The Bond Distances, Force Constants and Polar Tensors of HC ₃ N and HC ₅ N. J. Chem. Phys. **1989**, 90 (12), 6933–6939. https://doi.org/10.1063/1.456268.
- Bizzocchi, L.; Tamassia, F.; Laas, J.; Giuliano, B. M.; Esposti, C. D.; Dore, L.; Melosso, M.; Canè, E.; Charmet, A. P.; Müller, H. S. P.; et al. Rotational and High-Resolution Infrared Spectrum of HC 3 N: Global Ro-Vibrational Analysis and Improved Line Catalog for Astrophysical Observations . *Astrophys. J. Suppl. Ser.* 2017, 233 (1), 11. https://doi.org/10.3847/1538-4365/aa9571.
- (3) David R. Lide, Ed., CRC Handbook of Chemistry and Physics, Internet Version 2005, <http://Www.Hbcpnetbase.Com>, CRC Press, Boca Raton, FL, 2005.
- (4) Arnau, A.; Tunon, I.; Silla, E.; Andres, J. M. HCnN: The Largest Molecules in the Interstellar Medium. J. Chem. Educ. 1990, 67 (11), 905. https://doi.org/10.1021/ed067p905.
- McCarthy, M. C.; Levine, E. S.; Apponi, A. J.; Thaddeus, P. Experimental Structures of the Carbon Chains HC7N, HC9N, and HC11N by Isotopic Substitution. *Aroui*, *H*. 2000, 203 (1), 75–81. https://doi.org/DOI 10.1006/jmsp.2000.8149.