Supporting Information Benchmark and parameter tuning of hybrid functionals for fast calculation of excitation energies of AIEgens

Junyi Gong,[†] Jacky W. Y. Lam,[†] and Ben Zhong Tang^{*,†,‡}

†Department of Chemistry, Hong Kong Branch of Chinese National Engineering., Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, State Key Laboratory of Molecular Nanoscience, Division of Life Science and Department of Chemical and Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China ‡Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 China

E-mail: tangbenz@ust.hk

Contents

List of Figures

S1	1 A rough survey about popularity of different functionals used by general AIE			
	research (on Google scholar, $04/07/2020$).	4		
S2	Experimental transition energy versus calculated transition energy from dif-			
	ferent functionals with def2-SVP basis set	5		
S3	Some typical ESIPT and ICT systems and the calculation transition energy			
	from corresponding methods.	5		
S4	(A) Experimental transition energy versus calculated transition energy, (B)			
	histogram of sighed deviation and (C) calculation deviation distribution to			
	experimental transition energy from M062X functional with def2-SVP basis			
	set	6		
S5	MSD and MAD of functionals including PBE40 and BLYP40. \ldots .	6		
S6	MAD of functionals including PBE40 and BLYP40 in different subsets	7		
S7	Chemical structures in dataset (1-12).	9		
S8	Chemical structures in dataset (13-27).	9		
S9	Chemical structures in dataset (28-35).	10		
S10	Chemical structures in dataset (36-40).	10		

List of Tables

S1	MAD (eV) of calculation under different methods with def2-SVP basis set in	
	total and different subsets	8
S2	MAD (eV) and MSD (eV) of calculation under single-parameterized function-	
	als with def2-SVP basis set and varied HF fraction (a).	8

S3	Experimental transition energy data and type labels for compounds in tested	
	dataset.	11

Calculation details

All calculation were performed on ORCA 4.1 shared library version installed on a PC (Archlinux) with Linux kernel 5.5.13.arch1-1 and openmpi 3.1.4 for parallel calculation. The optimization jobs were done under head of input files:

1 ! opt BLYP def2-SVP def2/J RI tightSCF grid5 nofinalgrid

The TD-DFT calculations for transition energy from ground state to first singlet state were carried out with head of input files (in which XXX denotes different functionals.):

```
1 ! sp XXX def2-SVP def2/J RIJCOSX tightSCF grid5 nofinalgrid
2 %tddft nroots=20 iroot=1 triplets false tda false end
```

M11, MN15 functionals were not implemented in ORCA. Related calculation was done on NWChem quantum chemistry suite with same settings and calculation level.

Additional figures, schemes and tables

Figure S1: A rough survey about popularity of different functionals used by general AIE research (on Google scholar, 04/07/2020).

Figure S2: Experimental transition energy versus calculated transition energy from different functionals with def2-SVP basis set.

Figure S3: Some typical ESIPT and ICT systems and the calculation transition energy from corresponding methods.

Figure S4: (A) Experimental transition energy versus calculated transition energy, (B) histogram of sighed deviation and (C) calculation deviation distribution to experimental transition energy from M062X functional with def2-SVP basis set.

Figure S5: MSD and MAD of functionals including PBE40 and BLYP40.

Figure S6: MAD of functionals including PBE40 and BLYP40 in different subsets.

Table S1: MAD (eV) of calculation under different methods with def2-SVP basis set in total and different subsets.

Methods	total	Normal	\mathbf{ESIPT}	$D-\pi-A$
M062X	0.241086	0.243078	0.259129	0.246543
cam-B3LYP	0.248617	0.211839	0.259212	0.29157
BHANDHLYP	0.267162	0.215903	0.292237	0.320799
PBE0	0.332308	0.404754	0.287492	0.276886
PW1PW	0.355527	0.425169	0.287983	0.312411
mPW1LYP	0.362037	0.434971	0.29764	0.314319
M06	0.379461	0.485659	0.301434	0.312921
wB97X	0.387921	0.209032	0.364257	0.568816
X3LYP	0.404762	0.468167	0.332924	0.356983
B3PW91	0.429609	0.483228	0.347363	0.390176
B3LYP	0.436824	0.504199	0.355259	0.385329
B97M	0.544136	0.493450	0.454112	0.579572
TPSSh	0.55674	0.579049	0.481304	0.532546
O3LYP	0.581079	0.605045	0.510635	0.553813
HF	0.583045	0.246598	0.659381	0.855763
PBE	0.824205	0.811968	0.809756	0.797716
BLYP	0.92555	0.826131	0.982148	0.930732
M11	0.430185	0.247978	0.62777	0.406182
MN15	0.25449	0.261663	0.271397	0.286384

Table S2: MAD (eV) and MSD (eV) of calculation under single-parameterized functionals with def2-SVP basis set and varied HF fraction (a).

	PBE functional		BLYP functional	
HF fraction (a)	MAD	MSD	MAD	MSD
0	0.824205	-0.821380	0.925550	-0.914780
0.25	0.332308	-0.269680	0.366314	-0.307430
0.3	0.295436	-0.214100	0.307717	-0.217860
0.35	0.254579	-0.129140	0.264420	-0.130540
0.4	0.240636	-0.050480	0.246730	-0.056000
0.45	0.245952	0.022642	0.254765	0.011516
0.5	0.260224	0.089943	0.267162	0.106176
0.55	0.284665	0.151560	-	-
0.6	-	-	0.309183	0.191417
0.65	0.334095	0.258233	-	-
1	0.583045	0.562386	0.583045	0.562386

Figure S7: Chemical structures in dataset (1-12).

Figure S8: Chemical structures in dataset (13-27).

Figure S9: Chemical structures in dataset (28-35).

Figure S10: Chemical structures in dataset (36-40).

compounds	experimental (eV)	type
1	3.870967742	normal
2	3.550295858	normal
3	3.773584906	normal
4	3.314917127	normal
5	3.592814371	normal
6	3.243243243	normal
7	4.013377926	normal
8	2.721088435	$D-\pi-A$
9	2.48447205	$D-\pi-A$
10	2.569593148	$D-\pi-A$
11	2.553191489	$D-\pi-A$
12	3.06122449	$D-\pi-A$
13	2.424242424	$D-\pi-A$
14	3.703703704	normal
15	3.603603604	normal
16	3.519061584	normal
17	3.438395415	normal
18	3.418803419	\mathbf{ESIPT}
19	3.10880829	normal
20	3.870967742	normal
21	3.333333333	normal
22	3	\mathbf{ESIPT}
23	2.962962963	\mathbf{ESIPT}
24	3.47826087	\mathbf{ESIPT}
25	2.733485194	ESIPT D- π -A
26	3.157894737	\mathbf{ESIPT}
27	3.243243243	\mathbf{ESIPT}
28	3.243243243	\mathbf{ESIPT}
29	3.38028169	\mathbf{ESIPT}
30	2.784222738	$D-\pi-A$
31	2.771362587	$D-\pi-A$
32	3.092783505	$D-\pi-A$
33	3.333333333	$D-\pi-A$
34	2.941176471	$D-\pi-A$
35	3.076923077	$D-\pi-A$
36	2.884615385	$D-\pi-A$
37	2.823529412	ESIPT D- π -A
38	2.5	$D-\pi-A$
39	2.376237624	$D-\pi-A$
40	1.904761905	$D-\pi-A$

Table S3: Experimental transition energy data and type labels for compounds in tested dataset.