Supplementary information for: "Assessing the effect of regularization on the molecular properties predicted by SCAN and self-interaction corrected SCAN meta-GGA"

Yoh Yamamoto¹, Alan Salcedo¹, Carlos M. Diaz^{1,2}, Md Shamsul Alam^{1,2}, Tunna Baruah^{1,2}, and Rajendra R. Zope^{1,2}

¹Department of Physics, The University of Texas at El Paso, El Paso, Texas, 79968 ²Computational Science Program, The University of Texas at El Paso, El Paso, Texas, 79968

S1 Polynomial used in rCAN

The polynomial function used in the rSCAN implementation is defined as

$$f(\alpha) = c_1 + c_2\alpha + c_3\alpha^2 + c_4\alpha^3 + c_5\alpha^4 + c_6\alpha^5 + c_7\alpha^6 + c_8\alpha^7$$
(S1)

for $\alpha \in [0, 2.5]$ where the coefficients *c*'s are as shown in Table S1. Those are the same as in Ref.¹. The constraints used are $f^{(0,1,2)}(0)$ and $f^{(0,1,2,3)}(2.5)$ to be identical values as the $f(\alpha)$ in SCAN at these two points. In addition, f(1) = 0 was also used as a constraint. The plots of $f_x(\alpha)$ and $f'_x(\alpha)$ are shown in Fig. S1. The plot of $\partial \varepsilon_{XC}/\partial \rho$ for an Ar atom is shown in Fig. S2. We have also tested different choices of polynomials with the same constraints and found essentially the same results.

Table 51	i ne (coenicients	used io	line	12CAIN	impieme	ntation	(same a	s Rei. [I <u>]</u>).

Table C1 The exectivity used for the uCOAN implementation (some so Def. [1])

Coef.	Exchange	Correlation
$ \begin{array}{c} c_1\\ c_2\\ c_3\\ c_4\\ c_5\\ c_6\\ c_7\\ c_8 \end{array} $	$\begin{array}{r} 1.000 \\ -0.677 \\ -0.44456 \\ -0.62109 \\ 1.39690 \\ -0.85920 \\ 0.22746 \\ -0.02252 \end{array}$	$\begin{array}{r} 1.000 \\ -0.640 \\ -0.4352 \\ -1.53568 \\ 3.06156 \\ -1.91571 \\ 0.51688 \\ -0.05185 \end{array}$

Figure S1 The switching function $f_x(\alpha)$ and $f'_x(\alpha)$ for SCAN and rSCAN.

Figure S2 $\partial \varepsilon_{xC} / \partial \rho$ as a function of *r* for Ar atom with SCAN and rSCAN.

S2 Dipole moments, S22, and BH76

System	SCAN	rSCAN	$CCSD(T)^{a}$
AlF	1.31	1.31	1.47
AlH ₂	0.40	0.40	0.40
BeH	0.58	0.58	0.23
BF	1.05	1.05	0.82
BH	1.58	1.59	1.41
BH_2	0.48	0.49	0.50
BH ₂ Cl	0.55	0.55	0.68
BH_2F	0.68	0.68	0.83
$BHCl_2$	0.56	0.56	0.67
BHF_2	0.83	0.83	0.96
BN	2.12	2.06	2.04
BO	2.35	2.33	2.32
BS	0.89	0.85	0.78
C_2H	0.76	0.74	0.76
C_2H_3	0.71	0.70	0.69
C_2H_5	0.34	0.34	0.31
CF	0.89	0.90	0.68
CF_2	0.72	0.72	0.54
	1.40	1.40	1.43
	0.30	0.37	0.02
	2.31	2.31	2.20
CHaNH	2.02	2 00	2.07
CH_PH	1 02	0.99	0.87
CH ₂ -singlet	1.02	1.82	1 49
CH ₂ -triplet	0.59	0.59	0.59
CH ₂ BH ₂	0.69	0.37	0.59
CH ₂ BO	3 77	3 78	3.68
CH ₂ Cl	1 94	1 91	1 90
CH ₂ F	1.72	1.71	1.81
CH ₂ Li	5.77	5.76	5.83
CH ₃ NH ₂	1.36	1.35	1.39
CH ₃ O	2.11	2.09	2.04
CH ₃ OH	1.66	1.65	1.71
CH ₃ SH	1.65	1.66	1.59
CIČN	3.00	3.02	2.85
ClF	0.82	0.75	0.88

Table S2 Dipole moments of 152 benchmark molecules (in Debye).

ClO_2	1.76	1.75	1.86
CN	1.41	1.41	1.43
CO	0.13	0.17	0.12
CS	1 92	1 96	1 97
CSO	0.70	0.70	0.73
ECN	0.72	0.79	0.75
FCN		2.33	2.10
	0.05	0.04	0.77
FП-BП ₂	3.03	3.03	2.97
FH-NH ₂	4.6/	4.6/	4.63
FH-OH	3.40	3.40	3.38
FNO	1.54	1.51	1.70
H_2CN	2.52	2.50	2.49
H ₂ O	1.86	1.87	1.86
H ₂ O-Al	4.53	4.54	4.36
$H_{2}O-Cl$	3.04	3.05	2.24
$H_2 \Omega - F$	2.58	2.64	2.19
$H_2\tilde{O}$ - H_2O	2.00	2.78	2 73
H ₂ O ₋ Li	2.78	2.78	3.62
H ₂ O-NH ₂	2.70	3 58	3.02
	1 OF	1.06	0.00
$\Pi_2 3 \cdot \Pi_2 3$	1.03	1.00	0.92
H ₂ S-HCI	2.30	2.36	2.13
HBH ₂ BH	0.85	0.88	0.84
HBO	2.72	2./1	2.73
HBS	1.43	1.40	1.38
HCCCI	0.31	0.28	0.50
HCCF	0.56	0.52	0.75
НСНО	2.37	2.32	2.39
HCHS	1.86	1.80	1.76
HC1	1.16	1.15	1.11
HCI-HCI	1 91	1 90	1 78
HCN	3 03	3 02	3 01
HCNO	2.60	2.52	2.01
	2.00	1.57	2.90
	2.00	2.03	1.07
	2.09	2.07	2.12
HCONH ₂	3.96	3.95	3.92
HCOOH	1.48	1.4/	1.38
HCP	0.48	0.45	0.35
	1.80	1.80	1.81
HF-HF	3.42	3.42	3.40
HN_3	1.77	1.79	1.66
HNC	3.05	3.07	3.08
HNCO	2.05	2.04	2.06
HNO	1.57	1.56	1.65
HNO ₂	1.96	1.95	1.93
	11/0	11/0	11/0

Dipole moments continued.

	1.00	1.00	
HNS	1.39	1.39	1.41
HO_{2}	2.17	2.21	2.17
HOCI	1.55	1.56	1.52
HOCN	3.97	3.99	3.80
HOF	1.92	1.89	1.92
HOOH	1.57	1.57	1.57
HPO	2.34	2.32	2.63
$LiBH_4$	6.11	6.11	6.13
LiCl	7.10	7.10	7.10
LiCN	6.99	7.00	6.99
LiF	6.28	6.28	6.29
LiH	5.82	5.82	5.83
LiN	6.84	6.83	7.06
LiOH	4 53	4 53	4.57
N ₂ H ₂	2.83	2.83	2.88
N ₂ H ₄	2.71	2.71	2.72
NaCl	8.85	8.85	9.01
NaCN	8.81	8.82	8.89
NaF	7 99	7 99	8 1 3
NaH	6 33	6 3 3	6 40
Nali	0.23	0.25	0.10
NaOH	6.63	6.63	6 77
NCl	1 14	1 16	1 13
NCO	0.83	0.84	0.79
NF	0.03	0.18	0.77
NF2	0.13	0.10	0.07
NH	1 54	1 54	1 54
NH2	1.80	1.80	1.79
NH ₂ Cl	2 03	2.01	1 95
NH ₂ F	2.00	2.24	2 27
NH ₂ OH	0.70	0.67	0.70
NH ₂	1 55	1 55	1 53
NH ₂ -BH ₂	5.33	5.33	5.28
NH ₂ -NH ₂	2.18	2.19	2.13
NH ₂ O	5.21	5.21	5.39
NO	0.17	0.19	0.13
NO ₂	0.29	0.29	0.34
NOCI	1.86	1.83	2.08
NP	2.74	2.75	2.87
NS	1.77	1.79	1.82
O_3	0.63	0.64	0.57
oči	1.43	1.43	1.28
OCl ₂	0.50	0.48	0.56
OF	0.16	0.19	0.00
	0.10	0.17	0.02

Dipole moments continued.

Dipole moments continued.

OF ₂	0.33	0.31	0.33
OH	1.65	1.65	1.66
P_2H_4	1.06	1.08	1.00
PCl	0.42	0.38	0.57
PF	0.65	0.66	0.81
PH	0.50	0.49	0.44
PH_2	0.62	0.62	0.55
PH ₂ OH	1.89	1.92	0.68
PH_3	0.67	0.69	0.61
PH ₃ O	3.63	3.63	3.77
PO	1.89	1.85	1.96
PO_2	1.36	1.33	1.44
PPO	1.74	1.69	1.88
PS	0.55	0.52	0.68
S_2H_2	1.19	1.19	1.14
SCl	0.19	0.22	0.07
SCl_2	0.34	0.31	0.39
SF	0.63	0.59	0.81
SF_2	0.90	0.87	1.06
SH	0.83	0.83	0.77
SH_2	1.06	1.07	0.99
SiH	0.19	0.20	0.11
SiH ₃ Cl	1.28	1.28	1.36
SiH ₃ F	1.23	1.23	1.31
SiO	2.99	2.95	3.11
SO_2	1.54	1.52	1.63
SO-triplet	1.40	1.40	1.56

System	SCAN	rSCAN	CCSD(T) ^a
2-pyridoxine–2-aminopyridine	17.0	17.1	17
Adenine–thymine stack	8.7	8.5	11.66
Adenine–thymine WC	16.0	16.2	16.74
Ammonia dimer	3.2	3.2	3.17
Benzene–ammonia	2.1	2.0	2.32
Benzene dimer C2h	1.0	0.9	2.62
Benzene dimer C2v	1.5	1.5	2.71
Benzene–HCN	4.2	4.1	4.55
Benzene–methane	0.9	0.9	1.45
Benzene–water	3.4	3.3	3.29
Ethene dimer	1.2	1.1	1.5
Ethene–ethyne	1.4	1.4	1.51
Formamide dimer	16.6	16.7	16.12
Formic acid dimer	21.0	20.9	18.8
Indole–benzene stack	2.1	1.9	4.59
Indole–benzene T-shape	4.2	4.1	5.62
Methane dimer	0.4	0.4	0.53
Phenol dimer	6.0	5.9	7.09
Pyrazine dimer	2.7	2.5	4.2
Uracil dimer HB	20.5	20.6	20.69
Uracil dimer stack	8.1	7.9	9.74
Water dimer	5.5	5.5	5.02

 Table S3 Weak interaction energies of the S22 set of molecules (in kcal/mol).

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Reaction	Direction	SCAN	rSCAN	$W1^a$	W2-F12 ^b
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$H + HCl \rightarrow H_2 + Cl$	Forward	-1.4	-0.1	5.7	6.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 2 -	Reverse	0.1	-0.3	8.7	8.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$OH + H_2 \rightarrow H_2O + H$	Forward	-2.1	-2.6	5.1	5.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Reverse	11.1	13.2	21.2	21.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$CH_3 + H_2 \rightarrow CH_4 + H$	Forward	7.2	6.9	12.1	11.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 2 1	Reverse	7.0	8.0	15.3	15.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$OH + CH_4 \rightarrow H_2O + CH_3$	Forward	-1.6	-1.9	6.7	6.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Reverse	11.8	12.7	19.6	19.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$H + H_2 \rightarrow H_2 + H$	Forward	2.4	2.3	9.6	9.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Reverse	2.4	2.3	9.6	9.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$OH + NH_3 \rightarrow H_2O + NH_2$	Forward	-7.4	-7.9	3.2	3.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Reverse	3.2	3.3	12.7	13.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$HCl + CH_3 \rightarrow CH_4 + Cl$	Forward	-3.1	-3.3	1.7	1.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Reverse	-1.7	-2.3	7.9	6.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$OH + C_2H_6 \rightarrow H_2O + C_2H_5$	Forward	-4.8	-5.3	3.4	3.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Reverse	13.0	14.0	19.9	20.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$F + H_2 \rightarrow HF + H$	Forward	-7.7	-8.2	1.8	1.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Reverse	22.2	24.8	33.4	33.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$O + CH_4 \rightarrow OH + CH_3$	Forward	2.2	2.1	13.7	14.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Reverse	3.3	2.9	8.1	8.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$H + PH_3 \rightarrow H_2 + PH_2$	Forward	-3.2	-3.4	3.1	2.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Reverse	19.5	19.3	23.2	24.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$H + HO \rightarrow H_2 + O$	Forward	3.2	3.0	10.7	10.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Reverse	2.1	1.1	13.1	13.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$H + H_2S \rightarrow H_2 + HS$	Forward	-2.7	-2.7	3.5	3.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Reverse	11.1	10.1	17.3	1/.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O + HCI \rightarrow OH + CI$	Forward	-4.0	-5.0	9.8	10.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Reverse	-1.5	-3.2	10.4	9.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$CH_3 + NH_2 \rightarrow CH_4 + NH$	Forward	4.5	3.9	× 22.4	8.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Reverse	12.5	12.8	22.4	22.0
$\begin{array}{ccccccccccccc} & & & & & & & & & & & & &$	$C_2H_5 + NH_2 \rightarrow C_2H_6 + NH$	Forward	6.U	5.5	/.5	9.8
$\begin{array}{cccccccccccccc} NH_2 + C_2H_6 \rightarrow NH_3 + C_2H_5 & Forward & 4.8 & 4.5 & 10.4 & 11.3 \\ Reverse & 12.0 & 12.6 & 17.4 & 17.8 \\ NH_2 + CH_4 \rightarrow NH_3 + CH_3 & Forward & 7.7 & 7.6 & 14.5 & 13.9 \\ \text{s-trans cis-}C_5H_8 \rightarrow \text{s-trans cis-}C_5H_8 & Forward & 33.6 & 32.5 & 38.4 & 39.7 \\ Reverse & 33.6 & 32.5 & 38.4 & 39.7 \\ Reverse & 33.6 & 32.5 & 38.4 & 39.7 \\ \end{array}$		Reverse	9.5	9.0 4 F	18.3	19.4
$\begin{array}{cccccccccccccc} & & & & & & & & & & & & $	$\mathrm{N}\mathrm{\Pi}_2 + \mathrm{C}_2\mathrm{\Pi}_6 \rightarrow \mathrm{N}\mathrm{\Pi}_3 + \mathrm{C}_2\mathrm{\Pi}_5$	Potwaru	4.0 12.0	4.5 19.6	10.4	11.3
$\begin{array}{cccccc} \text{NH}_2 + \text{CH}_4 \rightarrow \text{NH}_3 + \text{CH}_3 & \text{Forward} & 7.7 & 7.6 & 14.5 & 15.9 \\ \text{Reverse} & 10.4 & 11.0 & 17.8 & 16.9 \\ \text{s-trans cis-C}_5\text{H}_8 \rightarrow \text{s-trans cis-C}_5\text{H}_8 & \text{Forward} & 33.6 & 32.5 & 38.4 & 39.7 \\ \text{Reverse} & 33.6 & 32.5 & 38.4 & 39.7 \\ \text{Reverse} & 33.6 & 32.5 & 38.4 & 39.7 \\ \end{array}$		Forward	12.0	12.0	1/.4 1/ E	1/.0
s-trans cis-C ₅ H ₈ \rightarrow s-trans cis-C ₅ H ₈ Forward 33.6 32.5 38.4 39.7 Reverse 33.6 32.5 38.4 39.7	$nn_2 + Cn_4 \rightarrow nn_3 + Cn_3$	Povorso	/./	/.0	14.J 17.Q	13.9
1000000000000000000000000000000000000	c trans cis $C_{-}H_{c} \rightarrow c$ trans cis $C_{-}H_{-}$	Forward	10.4	22 5	17.0	20.7
	5 -trails Cis-Cyrix \rightarrow 5-trails Cis-Cyrix	Reverse	33.6	32.5	38.4	39.7

Table S4 Reaction barrier heights of the BH76 set of molecules (in kcal/mol).

^{*a*}Reference [4] ^{*b*}Reference [5]

BH76 continued.

$H + N_2O \rightarrow OH + N_2$	Forward	18.7	19.2	18.14	17.7
	Reverse	66.1	62.6	83.22	82.6
${ m H}+{ m FH} ightarrow{ m HF}+{ m H}$	Forward	38.3	38.2	42.18	42.1
	Reverse	38.3	38.2	42.18	42.1
$H + ClH \rightarrow HCl + H$	Forward	19.5	19.3	18	17.8
	Reverse	19.5	19.3	18	17.8
$H + FCH_3 \rightarrow HF + CH_3$	Forward	29.2	28.3	30.38	30.5
	Reverse	46.3	46.4	57.02	56.9
$H + F_2 \rightarrow HF + F$	Forward	-1.6	-0.5	2.27	1.5
2	Reverse	88.6	89.2	106.18	104.8
$CH_3 + FCl \rightarrow CH_3F + Cl$	Forward	-5.1	-4.7	7.43	7.1
5	Reverse	45.9	45.4	60.17	59.8
$F^- + CH_3F \rightarrow FCH_3 + F^-$	Forward	-8.3	-7.8	-0.34	-0.6
	Reverse	-8.3	-7.8	-0.34	-0.6
$F^-\cdots CH_3F \rightarrow FCH_3\cdots F^-$	Forward	7.5	7.9	13.38	13.4
	Reverse	7.5	7.9	13.38	13.4
$C^{-}_{1} + CH_{3}C^{-}_{1} \rightarrow C^{-}_{1}CH_{3} + C^{-}_{1}$	Forward	-6.1	-4.6	3.1	2.5
	Reverse	-6.1	-4.6	3.1	2.5
$C^{-}_{1} \cdots CH_{2}C^{-}_{2} \rightarrow C^{-}_{1}CH_{2} \cdots C^{-}_{2}$	Forward	6.1	7.2	13.61	13.5
	Reverse	6.1	7.2	13.61	13.5
$F^- + CH_2Cl \rightarrow FCH_2 + Cl^-$	Forward	-21 7	-20.5	-12.54	-12.3
	Reverse	14.3	14.2	20.11	19.8
$F^- \cdots CH_2 Cl \rightarrow FCH_2 \cdots Cl^-$	Forward	-2.1	-12	2.89	3.5
	Reverse	24.4	24.2	29.62	29.6
$OH^- + CH_2F \rightarrow HOCH_2 + F^-$	Forward	-11 2	-10.7	-2 78	-27
	Reverse	9.8	10.7	17 33	17.6
$OH^- \dots CH_2 F \rightarrow HOCH_2 \dots F^-$	Forward	3.0	43	10.96	11.0
	Reverse	43.9	45.1	47 2	47.7
$H + N_2 \rightarrow HN_2$	Forward	13.9	13.7	14 69	14.6
	Reverse	9.8	9.3	10.72	10.9
$H + CO \rightarrow HCO$	Forward	5.9	6.1	3.17	3.2
	Reverse	24.2	24.2	22.68	22.8
$H + C_2H_4 \rightarrow CH_3CH_2$	Forward	5.2	6.4	1.72	2.0
	Reverse	43.3	43.2	41.75	42.0
$CH_3 + C_2H_4 \rightarrow CH_3CH_2CH_2$	Forward	0.7	2.1	6.85	6.4
5 -2 5 - <u>2</u> 2	Reverse	31.0	31.9	32.97	33.0
$\mathrm{HCN} ightarrow \mathrm{HNC}$	Forward	46.1	46.1	48.16	48.1
	Reverse	32.0	31.6	33.11	33.0

S3 Infrared and Raman spectra of water cluster

Table S5 Infrared and Raman spectra of water monomer. Frequencies (in cm^{-1}), IR intensities (in km mol⁻¹), and Raman intensities (in Å⁴ u⁻¹) and depolarization ratio are shown.

SCAN					CCSD(T) ^a			
Freq.	IR	Raman	Depol.	Freq.	IR	Raman	Depol.	Freq.
1640 3802 3909	70.77 2.96 54.50	0.66 100.86 25.46	0.72 0.05 0.75	1636 3803 3911	71.72 3.36 55.89	0.66 100.12 25.03	0.71 0.05 0.75	1638.1 3786.8 3904.5

^aReference [6]

Table S6 Infrared and Raman spectra of water dimer. Frequencies (in cm^{-1}), IR intensities (in km mol⁻¹), and Raman intensities (in Å⁴ u⁻¹) and depolarization ratio are shown.

SCAN					CCSD(T) ^a			
Freq.	IR	Raman	Depol.	Freq.	IR	Raman	Depol.	Freq.
94 147 171 203 388	124.4547.70118.93173.2043.820.10	$0.04 \\ 0.05 \\ 0.14 \\ 0.06 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.16 \\ $	$\begin{array}{c} 0.73 \\ 0.74 \\ 0.66 \\ 0.54 \\ 0.68 \end{array}$	105 163 164 201 382	$154.49 \\ 22.31 \\ 125.78 \\ 161.80 \\ 46.30 \\ 46.30$	$\begin{array}{c} 0.05 \\ 0.03 \\ 0.15 \\ 0.04 \\ 0.12 \end{array}$	$\begin{array}{c} 0.74 \\ 0.71 \\ 0.66 \\ 0.58 \\ 0.71 \end{array}$	132.6 145.3 146.1 183.6 355.2
649 1639 1664 3654 3790 3876 3894	89.10 85.86 36.35 386.50 8.85 74.56 78.12	$\begin{array}{r} 0.34\\ 0.92\\ 0.72\\ 151.68\\ 83.27\\ 51.35\\ 23.97\end{array}$	$\begin{array}{c} 0.74 \\ 0.75 \\ 0.30 \\ 0.14 \\ 0.05 \\ 0.26 \\ 0.75 \end{array}$	653 1635 1660 3659 3799 3885 3903	88.74 87.59 37.28 397.39 8.71 75.17 79.83	$\begin{array}{c} 0.32\\ 0.88\\ 0.69\\ 170.27\\ 80.66\\ 50.81\\ 23.69\end{array}$	$\begin{array}{c} 0.74 \\ 0.74 \\ 0.31 \\ 0.15 \\ 0.05 \\ 0.26 \\ 0.75 \end{array}$	629.7 1639.6 1658.8 3712.1 3782.5 3875.5 3896.1

	S	CAN			rS	CAN		$CCSD(T)^a$
Freq.	IR	Raman	Depol.	Freq.	IR	Raman	Depol.	Freq.
190	102.95	0.04	0.71	200	37.87	0.03	0.71	157
197	44.45	0.10	0.62	204	25.98	0.05	0.56	170
213	57.00	0.19	0.74	220	71.17	0.30	0.70	183
214	79.27	0.21	0.73	224	148.95	0.15	0.75	190.3
240	7.45	0.27	0.18	239	5.47	0.26	0.18	216.7
250	42.44	0.18	0.63	264	43.85	0.19	0.66	234.1
375	62.91	0.93	0.34	385	76.09	0.72	0.41	334.5
388	51.73	0.49	0.62	396	30.54	0.63	0.49	343.5
481	122.23	0.49	0.28	488	124.93	0.53	0.25	434.1
636	186.88	0.76	0.56	638	186.37	0.59	0.63	558.7
719	290.05	0.30	0.46	724	291.11	0.27	0.57	650.1
953	8.74	0.52	0.74	958	9.02	0.49	0.73	850.8
1649	57.25	1.28	0.65	1647	52.22	1.29	0.63	1647.8
1651	81.78	0.90	0.53	1649	89.09	0.88	0.52	1650.1
1674	14.87	0.98	0.75	1672	14.12	0.98	0.75	1671.7
3429	29.13	304.92	0.06	3427	26.38	300.24	0.06	3596.5
3515	754.03	37.68	0.74	3514	759.62	37.20	0.74	3647.8
3537	683.55	47.93	0.54	3533	687.80	38.67	0.59	3655
3864	78.86	53.18	0.22	3865	87.49	46.96	0.25	3865.7
3865	77.77	51.03	0.43	3866	70.63	62.53	0.32	3869.9
3867	42.63	114.89	0.08	3869	45.91	109.97	0.09	3871.4

Table S7 Infrared and Raman spectra of water trimer. Frequencies (in cm^{-1}), IR intensities (in km mol⁻¹), and Raman intensities (in Å⁴ u⁻¹) and depolarization ratio are shown.

SCAN				rSCAN				CCSD(T) ^a
Freq.	IR	Raman	Depol.	Freq.	IR	Raman	Depol.	Freq.
63	0.15	0.17	0.67	54	0.01	0.12	0.73	48.8
77	2.91	0.30	0.74	85	1.90	0.39	0.75	76.1
222	0.16	0.24	0.11	223	0.10	0.22	0.12	192.1
236	38.03	0.96	0.75	234	37.55	0.81	0.75	208.2
251	130.83	0.04	0.75	263	37.78	0.05	0.75	230.8
260	47.33	0.06	0.74	265	20.32	0.05	0.75	230.8
277	146.05	0.03	0.66	283	234.89	0.00	0.75	248.7
282	216.38	0.00	0.34	286	248.59	0.00	0.73	248.7
287	9.42	0.03	0.60	289	3.94	0.05	0.75	254.3
316	1.50	0.22	0.36	327	0.31	0.20	0.34	283.5
433	0.20	0.19	0.29	442	0.02	0.21	0.29	391
461	19.63	0.78	0.74	478	15.73	0.80	0.75	421
481	38.75	0.56	0.75	493	37.35	0.52	0.75	437.9
484	37.65	0.62	0.75	494	38.02	0.59	0.75	437.9
807	132.49	0.62	0.73	811	136.70	0.69	0.75	730.5
891	159.02	0.41	0.75	898	163.54	0.40	0.75	800.2
900	161.73	0.37	0.74	900	161.87	0.41	0.75	800.2
10/4	0.02	0.68	0.01	10/8	0.00	0.42	0.08	9/1
1649	83.66	0.66	0.75	164/	84.91	0.64	0.75	1653
1664	42.80	0.54	0.75	1663	42./3	0.53	0.75	1666.6
1605	42.21	0.54	0.74	1604	42.07	0.55	0.75	1600.0
2161	0.05	260.22	0.20	2160	0.00	1.91	0.19	1095.5
2200	10.21	300.22 2.12	0.08	2200	1802.00	557.1 4 2.10	0.08 0.74	25266
3277 2202	1000.40	2.13	0.73	3299	1093.09	2.10	0.74	2520.0
3303	26.21	2.27	0.72	3353	1091.0J 26.84	2.30	0.75	3520.0
3860	20.31	103.31	0.75	3861	20.0 4 60.75	100.52	0.75	3860.0
3861	45 97	95 66	0.33	3862	73 50	20.86	0.34	3861 4
3862	71 11	43 90	0.00	3863	45 34	97.98	0.11	3861.4
3864	45.77	95.13	0.07	3865	46.19	95.84	0.09	3861.5

Table S8 Infrared and Raman spectra of water tetramer. Frequencies (in cm^{-1}), IR intensities (in km mol⁻¹), and Raman intensities (in Å⁴ u⁻¹) and depolarization ratio are shown.

SCAN			rSCAN				CCSD(T) ^a	
Freq.	IR	Raman	Depol.	Freq.	IR	Raman	Depol.	Freq.
30	4.38	0.02	0.75	30	4.57	0.02	0.74	22.5
44	0.06	0.18	0.62	43	0.03	0.20	0.61	41.4
68	0.10	0.22	0.74	67	0.15	0.25	0.75	60.6
78	1.84	0.29	0.66	71	1.45	0.26	0.75	63.5
189	2.21	0.21	0.22	191	0.91	0.22	0.15	179.2
203	31.05	0.59	0.74	206	31.14	0.60	0.75	190.1
213	31.08	0.62	0.74	219	39.08	0.59	0.75	196
238	115.26	0.17	0.70	244	95.34	0.17	0.73	226.6
255	4.33	0.01	0.73	258	6.82	0.01	0.71	232.3
267	146.94	0.03	0.74	266	148.96	0.04	0.71	236.9
286	270.53	0.09	0.29	288	276.54	0.05	0.59	265.1
321	82.37	0.18	0.74	324	76.91	0.17	0.75	291.8
330	11.90	0.06	0.75	331	19.75	0.04	0.73	295
336	1.11	0.04	0.70	338	1.52	0.02	0.72	297.7
449	48.52	0.84	0.39	453	50.97	0.62	0.46	400.5
463	14.93	0.31	0.22	467	10.20	0.30	0.16	420.7
490	15.64	0.81	0.74	495	15./8	0.75	0.74	443.9
500	1/./8	0.79	0.73	507	19.11	0.79	0./3	456./
559 771	02.28	0.99	0.35	501	02.38	0.89	0.40	503.1 702 E
//1	23./4	1.31	0.05	//8	24.10	1.32	0.70	/02.5
0 4 0 024	120.11	1.10	0.09	052	120.07	1.07	0.74	/00.Z
934	124.66	0.02	0.09	941	100.00	0.39	0.73	0 4 3.9 860
1063	124.00 8 15	0.20	0.73	1068	123.33 8 57	0.22	0.73	063 7
1640	83 44	0.07	0.19	1647	83 04	0.15	0.11 0.74	1657.6
1662	20.27	0.17	0.02	1660	10 34	0.10	0.74	1667.0
1672	58 45	0.55	0.37	1671	61.06	0.72 0.49	0.37 0.42	1675.2
1696	34.66	0.48	0.05	1695	36.19	0.44	0.04	1694.4
1705	4.22	0.62	0.63	1703	3.96	0.73	0.49	1701.4
3095	50.75	495.91	0.08	3097	48.68	493.31	0.08	3413
3223	2923.51	4.41	0.74	3224	2857.86	4.04	0.74	3482.9
3235	2624.40	13.29	0.38	3237	2630.15	13.05	0.38	3490.2
3297	93.02	74.00	0.75	3298	79.76	73.89	0.74	3529.6
3317	113.31	79.85	0.72	3317	120.20	75.18	0.73	3535.5
3861	50.36	53.55	0.28	3867	56.87	60.48	0.19	3859.1
3862	67.18	61.22	0.15	3870	66.32	49.40	0.24	3861.1
3862	50.73	57.29	0.18	3871	49.89	88.56	0.12	3862.9
3864	52.53	87.50	0.12	3873	40.97	23.24	0.71	3862.9
3867	57.65	108.78	0.08	3875	67.76	142.57	0.05	3865.7

Table S9 Infrared and Raman spectra of water pentamer. Frequencies (in cm^{-1}), IR intensities (in km mol⁻¹), and Raman intensities (in Å⁴ u⁻¹) and depolarization ratio are shown.

S4 FLOSIC-rCAN calculations

 Table S10 Atoms: total energies (in Hartree).

Z	rSCAN	SIC-rSCAN	E _{Accu} ^a
1	-0.500	-0.500	-0.5
2	-2.905	-2.900	-2.90
3	-7.480	-7.474	-7.48
4	-14.650	-14.643	-14.67
5	-24.641	-24.628	-24.65
6	-37.841	-37.813	-37.85
7	-54.594	-54.538	-54.59
8	-75.076	-74.997	-75.07
9	-99.752	-99.640	-99.73
10	-128.963	-128.799	-128.94
11	-162.286	-162.100	-162.25
12	-200.082	-199.874	-200.05
13	-242.383	-242.147	-242.35
14	-289.404	-289.131	-289.36
15	-341.311	-340.993	-341.26
16	-398.164	-397.807	-398.11
17	-460.208	-459.802	-460.15
18	-527.606	-527.141	-527.54
19	-599.981	-599.467	
20	-677.627	-677.061	
21	-760.692	-760.077	
22	-849.446	-848.791	
23	-944.011	-943.254	
24	-1044.596	-1043.686	
25	-1151.143	-1150.196	
26	-1263.849	-1262.832	
27	-1382.936	-1381.869	
28	-1508.506	-1507.310	
29	-1640.748	-1639.332	
30	-1779.669	-1778.237	
31	-1925.102	-1923.629	
32	-2077.232	-2075.698	
33	-2236.145	-2234.541	
34	-2401.837	-2400.160	
35	-2574.471	-2572.710	
36	-2754.143	-2752.290	

Z	rSCAN	SIC-rSCAN	Expt. ^a
2	24.624	24.483	24.587
3	5.400	5.374	5.392
4	8.802	8.820	9.323
5	8.788	8.732	8.298
6	11.716	11.437	11.26
7	14.889	14.308	14.534
8	13.707	13.431	13.618
9	17.609	17.005	17.423
10	21.633	20.589	21.565
11	5.180	5.140	5.139
12	7.393	7.395	7.646
13	6.181	6.180	5.986
14	8.341	8.215	8.152
15	10.670	10.441	10.487
16	10.345	10.419	10.36
17	13.045	12.962	12.968
18	15.879	15.646	15.76
19	4.282	4.472	4.341
20	5.839	6.089	6.113
21	6.241	7.054	6.561
22	6.984	8.324	6.828
23	7.126	7.070	6.746
24	7.312	7.015	6.767
25	6.908	7.133	7.434
26	7.795	8.068	7.902
27	8.396	8.279	7.881
28	8.789	8.443	7.64
29	8.090	7.488	7.726
30	9.238	9.519	9.394
31	6.156	6.560	5.999
32	8.093	8.324	7.899
33	10.134	10.423	9.789
34	9.685	10.280	9.752
35	11.913	12.379	11.814
36	14.250	14.743	14

 $\label{eq:table_state} \textbf{Table S11} \ \text{Atoms: ionization potentials (in eV)}.$

Table S12 Atoms: electron affinities (in eV).

Z	rSCAN	SIC-rSCAN	Expt. ^a
1	0.725	0.510	0.754
3	0.446	0.465	0.618
5	0.608	0.167	0.280
6	1.547	0.875	1.262
8	1.573	0.637	1.462
9	3.428	2.123	3.401
11	0.457	0.480	0.548
13	0.626	0.383	0.434
14	1.570	1.277	1.390
15	0.765	0.602	0.747
16	2.157	1.843	2.077
17	3.714	3.277	3.613
19	0.409	0.424	0.501
22	1.008	-1.211	0.087
29	1.178	1.061	1.236
31	0.544	0.187	0.43
32	1.540	1.274	1.233
33	0.830	0.659	0.814
34	2.135	1.806	2.021
35	3.584	3.232	3.364

^{*a*}Reference [9]

Table S13 Mean absolute error (in eV) of \triangle SCF electron affinities with respect to experiment.

Method	12 EAs	20 EAs
SCAN ^a	0.115	0.148
rSCAN ^a	0.135	0.173
SIC-SCAN ^D	0.364	0.341
SIC-rSCAN	0.329	0.314
Δ -DFA ^c	0.036	0.036
Δ -SIC ^d	0.036	0.032

^{*a*}Based on total energies. The eigenvalue of the extra electron becomes positive. ^{*b*}From reference [10]

 $^c\Delta\text{-}\text{DFA}$ is difference between rSCAN and SCAN

 $^d\Delta\textsc{-SIC}$ is difference between SIC-rSCAN and SIC-SCAN

System	rSCAN	SIC-rSCAN	Ref. ^a
C ₂ O ₂ H ₂	643.0	589.5	634.0
CH ₃ CCH	710.2	678.3	705.1
S_2	1160.8	1134.0	1149.4
	109.6	98.7	104.3
	322.4	326.9	325.0
SiO	188.8	157.8	193.1

Table S14 Atomization energies of the AE6 set of molecules (in kcal/mol).

^aReference [11]

Table S15 Reaction barrier heights of the BH6 set of molecules (in kcal/mol).

Reaction	Direction	rSCAN	SIC-rSCAN	Ref. ^a
$\overline{OH + CH_4} \rightarrow CH_3 + H_2O$	Forward	-14.6	11.6	6.7
	Reverse	12.6	14.2	19.6
$\mathrm{H} + \mathrm{O}\mathrm{H} {\rightarrow} \mathrm{H}_2 + \mathrm{O}$	Forward Reverse	$\begin{array}{c} 2.1\\ 12.8\end{array}$	10.614.0	$\begin{array}{c} 10.7\\ 13.1 \end{array}$
$H + H_2S \rightarrow H_2 + HS$	Forward	-2.7	1.6	3.6
	Reverse	4.3	14.3	17.3

Reaction	rSCAN	SIC-rSCAN	Ref. ^a
$\rm H_2^+ \rightarrow \rm H + \rm H^+$			
$ \begin{array}{c} R/R_e = 1.0 \\ R/R_e = 1.25 \\ R/R_e = 1.5 \\ R/R_e = 1.75 \end{array} $	67.8	64.4	64.4
	64.9	58.9	58.9
	57.8	48.7	48.7
	50.8	38.2	38.3
${ m He}_2^+ ightarrow { m He} + { m He}^+$			
$\begin{array}{c} {\rm R/R}_{e} = 1.0 \\ {\rm R/R}_{e} = 1.25 \\ {\rm R/R}_{e} = 1.5 \\ {\rm R/R}_{e} = 1.75 \end{array}$	74.4	56.5	56.9
	71.5	44.6	46.9
	63.4	27.5	31.3
	58.5	14.3	19.1
$(\mathrm{NH}_3)^+_2 ightarrow \mathrm{NH}_3 + \mathrm{NH}^+_3$			
$\begin{array}{l} {\rm R/R}_{e} = 1.0 \\ {\rm R/R}_{e} = 1.25 \\ {\rm R/R}_{e} = 1.5 \\ {\rm R/R}_{e} = 1.75 \end{array}$	43.4	36.3	35.9
	38.3	25.4	25.9
	30.9	11.6	13.4
	27.2	4.1	4.9
$(\mathrm{H_2O})_2^+ \rightarrow \mathrm{H_2O} + \mathrm{H_2O^+}$			
$ \begin{array}{c} R/R_e = 1.0 \\ R/R_e = 1.25 \\ R/R_e = 1.5 \\ R/R_e = 1.75 \end{array} $	52.9	36.3	39.7
	48.8	22.8	29.1
	42.7	11.9	16.9
	40.1	6.2	9.3
$\begin{array}{c} C_{4}H_{10}^{+} \rightarrow C_{2}H_{5} + C_{2}H_{5}^{+} \\ (CH_{3})_{2}CO^{+} \rightarrow CH_{3} + CH_{3}CO^{+} \\ ClFCl \rightarrow ClClF \\ C_{2}H_{4}F_{2} \rightarrow C_{2}H_{4} + F_{2} \\ C_{6}H_{6}Li \rightarrow Li + C_{6}H_{6} \\ NH_{3}ClF \rightarrow NH_{3} + ClF \\ NaOMg \rightarrow MgO + Na \\ FLiF \rightarrow Li + F_{2} \end{array}$	42.0	34.3	35.28
	30.1	40.5	22.57
	-22.3	-2.9	-1.01
	2.5	0.5	1.08
	7.7	12.1	9.5
	17.1	12.0	10.5
	75.7	95.3	69.56
	120.4	92.4	94.36

Table S16 Dissociation and reaction energies of the SIE4 \times 4 and SIE11 sets of molecules (in kcal/mol).

References

- 1 A. P. Bartók and J. R. Yates, J. Chem. Phys., 2019, 150, 161101.
- 2 D. Hait and M. Head-Gordon, J. Chem. Theory Comput., 2018, 14, 1969–1981.
- 3 P. Jurečka, J. Šponer, J. Černý and P. Hobza, Phys. Chem. Chem. Phys., 2006, 8, 1985–1993.
- 4 Y. Zhao, N. González-García and D. G. Truhlar, J. Phys. Chem. A, 2005, 109, 2012–2018.
- 5 L. Goerigk, A. Hansen, C. Bauer, S. Ehrlich, A. Najibi and S. Grimme, *Phys. Chem. Chem. Phys.*, 2017, **19**, 32184–32215.
- 6 E. Miliordos, E. Aprá and S. S. Xantheas, J. Chem. Phys., 2013, 139, 114302.
- 7 S. J. Chakravorty, S. R. Gwaltney, E. R. Davidson, F. A. Parpia and C. F. p Fischer, *Phys. Rev. A*, 1993, **47**, 3649–3670.
- 8 A. Kramida, Yu. Ralchenko, J. Reader and NIST ASD Team, NIST Atomic Spectra Database (ver. 5.6.1), [Online]. Available: https://physics.nist.gov/asd [2018, July 25]. National Institute of Standards and Technology, Gaithersburg, MD., 2018.
- 9 National Institute of Standards and Technology, NIST Computational Chemistry Comparison and Benchmark Database NIST Standard Reference Database Number 101 Release 19, April 2018, Editor: Russell D. Johnson III http://cccbdb.nist.gov/DOI:10.18434/T47C7Z.
- 10 Y. Yamamoto, C. M. Diaz, L. Basurto, K. A. Jackson, T. Baruah and R. R. Zope, *J. Chem. Phys.*, 2019, **151**, 154105.
- 11 B. J. Lynch and D. G. Truhlar, J. Phys. Chem. A, 2003, 107, 8996–8999.
- 12 L. Goerigk and S. Grimme, J. Chem. Theory Comput., 2010, 6, 107–126.