Supplemental Material for "Thermal Transport and

Thermal Spin Transport of Step-like Graphene

Nanoribbon Junctions"

Xingyi Tan^{*a*}, Lili Liu^{*a*}, Gui-Fang Du^{*b*} and Hua-Hua Fu^{**b*}

^aDepartment of Physics, Chongqing Three Gorges University, Wanzhou, 404100, People's Republic of China. ^bSchool of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China *E-mail: hhfu@hust.edu.cn

Fig. S1. The calculated values of the energy difference ΔE_{AFM-FM} (= $E_{AFM} - E_{FM}$) and ΔE_{AFM-NM} (= $E_{AFM} - E_{NM}$) for the parallel step-like GNR junctions with the different magnetic states, where E_{AFM} , E_{FM} and E_{NM} denote the energy of the AFM, FM and NM state, respectively. Here, the nanoribbon width N in the right part of the GNR junctions is changed from 4 to 10.

Fig. S2. The spin-dependent transmission spectra T(E). The black line (red dotted line) illustrates the flowing direction of the spin-up (spin-down) transmission spectra, respectively, where the transmission is united by e^2/h . The figures (a)-(f) describe the numerical results for the GNR junctions from 4-5 to 4-10, respectively.

Fig. S3. The thermally driven net spin-dependent currents ($I_s=I_{up} - I_{dn}$) as a function of the temperature T_L , where the temperature gradient $\Delta T (= T_L - T_R)$ is set as 2, 4, 6 K. The figures (a)-(f) describe the numerical results for the GNR junctions from 4-5 to 4-10, respectively.