Supplementary information for "Electroresponsive structuring and friction of a non-halogenated ionic liquid in a polar solvent: Effect of concentration"

Georgia A. Pilkington^{a,*}, Anna Oleshkevych^a, Patricia Pedraz^a, Seiya Watanabe^{a,†}, Milad Radiom^a, Akepati Bhaskar Reddy^b, Alexei Vorobiev^c, Sergei Glavatskih^{b,d}, and Mark W. Rutland^{a,e}

^aDivision of Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden. ^bSystem and Component Design, Department of Machine Design, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden. ^cDepartment of Physics and Astronomy, Division of Materials Physics, Uppsala University, Uppsala, Sweden. Royal Institute of Technology, SE-100 44 Stockholm, Sweden. ^dDepartment of Electrical Energy, Metals, Mechanical Constructions and Systems, Ghent University, B-9052 Ghent, Belgium. ^eSurfaces, Processes and Formulation, RISE Research Institutes of Sweden, SE-100 44 Stockholm, Sweden.

*Correspondence: georgiap@kth.se

[†]Current address: Tokyo University of Science, Department of Mechanical Engineering, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan

Example neutron reflectivity of a gold electrode in air

Figure S1. Example of the normalised reflectivity for a gold electrode in air. The symbols represent experimental data, while the solid line represents a fitted scattering length density (SLD) model fit to the data. The inset shows the corresponding SLD profile. This block was used for NR measurements in 20% [P_{6,6,6,14}][BMB] in PC.

Table S1. Example fitted parameters for a gold electrode in air corresponding to the model fit (solid line) presented in Fig.

 S1.

Layer	SLD (×10⁻⁶Å⁻²)	Thickness (Å)	Roughness (Å)
Au	4.56	190.0	8.35
Ti	-1.91	37.2	15.9
SiO ₂	3.47	17.3	8.93
Si	2.07	∞	2.09

Neutron reflectivity of pure PC

Figure S2. Neutron reflectivity of pure PC at a gold electrode for different applied potentials plotted as RQ⁴ showing no electrochemical response. This data was collected on the reflectivity beamline INTER at the ISIS Facility, Rutherford Appleton Laboratory, UK.⁴⁴

SLD model parameters obtained from best-fits to NR measurements across IL solutions

Table S2. Fitted parameters for 5% w/w $[P_{6,6,6,14}]$ [BMB] in PC solution corresponding to the model fits (solid lines) presented in Fig. 2.

Potential	SLD (×10 ⁻⁶ Å ⁻²)	Thickness (Å)	Gold/IL Roughness (Å)	IL/Bulk Roughness (Å)
0	1.90	24.8	14.3	13.1
-1.5	1.86	24.2	14.0	13.0
+0.25	2.04	28.3	14.0	12.1

Table S3. Fitted parameters for 10% w/w $[P_{6,6,6,14}][BMB]$ in PC solution corresponding to the model fits (solid lines) presented in Fig. 3.

Potential	SLD (×10 ⁻⁶ Å ⁻²)	Thickness (Å)	Gold/IL Roughness (Å)	IL/Bulk Roughness (Å)
0	2.94	23.8	15.5	7.49
-1.5	2.34	22.2	13.3	6.97
+0.25	2.68	26.8	13.6	14.2

Potential	SLD (×10 ⁻⁶ Å ⁻²)	Thickness (Å)	Gold/IL Roughness (Å)	IL/Bulk Roughness (Å)
0	1.34	28.1	8.35	10.2
-1.5	0.70	29.0	8.54	12.3
+0.25	2.25	53.2	9.13	18.9

Table S4. Fitted parameters for 20% w/w $[P_{6,6,6,14}][BMB]$ in PC solution corresponding to the model fits (solid lines) presented in Fig. 4.

Electrochemical Impedance Spectroscopy analysis

(a)

Figure S3. (a) Equivalent circuit used to model experimental EIS data. Resistor 1 represents contributions by cables, internal contact resistances inside the cell and the ion movement in the sample's bulk. Capacitor 1 accounts for the contributions by cables, stray capacitance due to the 3-electrode configuration and the bulk capacitance. The constant phase element 1 (= CPE 1) represents the differential interfacial capacitance of the sample/gold electrode interface, while resistor 2 and Warburg element 1 is related to diffusion processes at the interface. (b) Differential capacitance as a function of applied potential for solutions of 5 % and 20% [P_{6,6,6,14}][BMB] in PC on gold.

Cyclic voltammetry

Figure S4. Representative cyclic voltammetry profiles for (a) solutions of 5, 10 and 20% w/w [P_{6,6,6,14}][BMB] in PC performed in the electrochemical NR cell after performing neutron reflectivity measurements and (b) solutions of 5 and 20% w/w [P_{6,6,6,14}][BMB] in PC in the electrochemical AFM cell. The potential is given with respect to $E_{1/2}$ (Fc⁺/Fc). The scan rate is 10 mV/s.

IR measurements

Figure S5. IR spectra of 10, 20% w/w [P_{6,6,6,14}][BMB] in PC solutions in the wave range of (a) 4000 - 2000 cm⁻¹ and (b) 2000 - 500 cm⁻¹. Water shows broad O-H stretching mode peaks with wave range of 3400 - 3700 cm⁻¹. Peaks at 3500 - 3650 cm⁻¹ are assigned to overtone peaks of C=O stretching by comparing with spectra of pure [P_{6,6,6,14}][BMB] and PC.

Current stabilisation during NR measurements

Figure S6. Current across the NR cell after application of different potentials plotted as a function of time for a (a) 5 and (b) 20% w/w solution of $[P_{6,6,6,14}][BMB]$ in PC. (Data for the 10% w/w solution is not presented due to a data saving error.)