Supporting information for

INSIGHT OF THE THERMAL DECOMPOSITION OF AMMONIUM HEXAHALOGENOIRIDATES(IV) AND HEXACHLOROIRIDATE(III)

Kirill V. Yusenko, †,* Valentina V. Zvereva, ‡ Svetlana A. Martynova, ‡,# Igor P. Asanov, ‡

Camille La Fontaine, £ Olga Roudenko, £ Alexander I. Gubanov, ‡,#

Sergey V. Korenev, ‡,# Tatyana I. Asanova ‡,*

† BAM Federal Institute of Materials Research and Testing, Richard-Willstätter Str. 11, D-12489 Berlin, Germany

‡ Nikolaev Institute of Inorganic Chemistry, Lavrentiev ave. 3, 630090 Novosibirsk, Russia

Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk, Russia

£ Synchrotron SOLEIL, Saint-Aubin, Gif-sur-Yvette, France

Compound	Atmosphere	Step	$\Box T_{step}(^{\circ}C)$	T(°C)	Δm (wt.%)	Δm (a.e.m.)	gaseous products
$(NH_4)_3[IrCl_6] \cdot H_2O$	H ₂	2	90-160	111	4.2	19.8	H ₂ O
			160-300	274	52.9	251.2	HCl, N ₂ , NH ₃
			50-150	118	3.76	17.9	H ₂ O
$(NH_4)_3[IrCl_6] \cdot H_2O$	Не	3	150-270	221	8.94	42.5	HC1
			270-400	354	47.2	224.1	N ₂ , HCl, NH ₃
			150-215	188	11.6	51.1	N ₂ , HCl
$(NH_4)_2[IrCl_6]$	H ₂	3	215-310	290	31.4	137.8	HCl
			310-350	322	12.3	54.0	HCl, NH ₃
$(NH_4)_2[IrCl_6]$	Не	1	345-430	406	55.3	242.7	HCl, N ₂ , NH ₃
$(NH_4)_2[IrBr_6]$	H ₂	3	160-340	235	16.8	117.8	HBr, N ₂ , NH ₃
				287	53.2	373.9	
(NH ₄) ₂ [IrBr ₆]	Не	3	355-480	457	35.8	251.8	HBr, N ₂ , NH ₃
			480-525	514	15.1	105.9	
			525-575	555	18.9	132.9	

Table S1. Thermal decomposition parameters for (NH₄)₃[IrCl₆]·H₂O, (NH₄)₂[IrCl₆] and (NH₄)₂[IrBr₆].

Figure S1. 2D-FT map with magnitude profiles of FT corresponding to Ir–Cl (black curve) and Ir–Ir (red curve) FT peaks and FTs at 65, 260 and 284 °C in H_2 (left) and 38, 321 and 355 °C in N_2 (right).

Figure S2. Temperature behavior of the White line intensity at Ir L_{III} -edge for $(NH_4)_3[IrCl_6] \cdot H_2O$ in N_2 and H_2 atmospheres.

Figure S3. XANES spectra at Ir L_{III} -edge for $(NH_4)_3[IrCl_6] \cdot H_2O$ at room temperature and above 100 °C, where there is no crystalline water.