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1 Methods

1.1 Molecular Theory

Let us consider a lipid membrane separating two regions of an aqueous solution that

contains peptide molecules (CPP), water molecules (w), hydroxyde ions (OH−), hydro-

nium ions (OH+
3 or H+), and monovalent salt anions (−) and cations (+). Sufficiently far

from the membrane surface, the chemical composition of this solution is experimentally

controlled and completely defined by its pH, salt concentration, [NaCl], and peptide

concentration, [CPP]. The membrane is composed of two different types of lipids; a

charge neutral species (N) and another bearing an acidic group in its head-group (I).

This ionizable head-group can be found in one of two possible chemical states: either

protonated (charge neutral, IH) or deprotonated (negatively charged, I−).

We want to study the equilibrium properties of this system, including peptide adsorption

to the membrane surface and lipid charge regulation. Therefore, we express the Helmholtz

free energy of the system as

F = −TSTF − TSTP + FCP + FMS + UE + UAD + Ust (S1)

where

• T is the temperature.

• STF is the translational entropy of free species (excluding the peptide): water and

small ions.

• STP is the translational and conformational entropy of peptides.

• FCP is the chemical free energy of peptides (acid-base equilibrium).
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• FMS is the surface (non-electrostatic) free energy of the lipid membrane, which

includes description of the acid-base equilibrium of ionizable lipids.

• UE is the electrostatic energy.

• UAD is the contribution that accounts for the internal energy of contacts between

the membrane surface and peptide residues.

• Ust is the internal energy of the steric interactions.

The membrane interior is modeled as a region from which solution molecules are ex-

cluded, having permittivity εM, different from that of the solvent (εw). This region is

defined by

−hmem < z < 0 (S2)

where hmem is the membrane thickness, and z is the distance from the planar upper

membrane surface, defined by the plane z = 0. The lower membrane surface, given by

z = −hmem, is also planar. We assume there is reflection symmetry with respect to the

z = − hmem
2 plane. Next, we will present expressions for the different contributions to the

free energy Eq. (S1).

The translational entropy of the small free species is given by

−STF

kB
= ∑

γ∈{w,OH+
3 ,OH−,+,−}

A
∫ ∞

0
dz ργ(z)

[
ln
(
ργ(z)vw

)
− 1 + βµ0

γ

]
(S3)

where

• γ runs over the different small species in the solution.

• ργ(z) is the number density of species γ at z; namely, the number of these molecules

between z and z + dz.

• µ0
γ is the standard chemical potential of species γ. Then, in addition to the mix-

ing/translation entropy, STF also incorporates the self-energies of solution species.
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• vw is the volume of a water molecule, included to keep the inside of the logarithms

unitless.

• kB is the Boltzmann constant and β = 1
kBT .

• A is the area of the membrane surface.

The entropy of peptide translations and conformations can be expressed as

−STP

kB
= A

∫ ∞

0
dz ∑

αP∈{αP}
ρP(αP, z)

[
ln
(
ρP(αP, z)vw

)
− 1 + βµ0

P
]

(S4)

where

• αP denotes a peptide conformation; {αP} is the set of all peptides conformations.

If the peptide does not have conformational flexibility, then {αP} simply contains

rotations of the rigid structure. On the contrary, {αP} contains both different

conformers and rotations.

• ρP(αP, z) is the local number density of peptides in conformation αP. The total

density of peptide is an ensemble average over its configurations:

〈ρP(z)〉 = ∑
αP

ρP(αP, z) (S5)

• µ0
P is the standard chemical potential of peptides, which also considers the self-

energy of the molecule. If peptide conformations have different intrinsic energies

associated, then µ0
P = µ0

P(αP).

• We can now define the probability distribution function of molecular conformations,

which depends on the position of the center of mass of the peptide:

PP(αP, z) =
ρP(αP, z)
〈ρP(z)〉

(S6)

S5



which satisfies

∑
αP

PP(αP, z) = 1 ; ∀ z (S7)

In this work, we assume that all peptide conformations are equally probable in the

bulk solution. Namely,

lim
z→∞

PP(αP, z) =
1
nc

(S8)

where nc is the total number of peptide conformations; nc = dim{αP}.

The chemical free energy of peptides, which describes the acid-base equilibrium of

titratable residues can be written as

βFCP = A
∫ ∞

0
dz ∑

τ∈{τ}
〈ρτ(z)〉gτ(z)

[
ln
(

gτ(z)
)
+ βµ0

τ,p
]

+ A
∫ ∞

0
dz ∑

τ∈{τ}
〈ρτ(z)〉(1− gτ(z))

[
ln
(
1− gτ(z)

)
+ βµ0

τ,d
] (S9)

where

• τ denotes a particular type of protonable unit; {τ} is the whole set of different such

units. In this work, we will use the terms unit/segment and residue interchange-

ably. However, this present formulation of the theory does not require amino-acid

residues to be described with a single coarse-grain unit.

• 〈ρτ(z)〉 is the local number density of τ segments, which is an ensemble average

over peptide conformations:

〈ρτ(z)〉 = A
∫ ∞

0
dz′ ∑

αP∈{αP}
ρP(αP, z′)nτ(αP, z′, z) (S10)

• nτ(αP, z′, z) is the number of τ units that a single peptide in conformation αP and

center of mass at z′ contributes to z.

• To calculate results using the theoretical framework described in the section, a

S6



molecular model must be defined that provides {nτ(αP, z′, z), ∀(αP, z′, z)} as an

input for each peptide.

• Note that Eq. (S10) is valid for all units, not only those that are titratable, including

charge neutral units.

• gτ(z) is the local degree of protonation of a τ unit. Then,

gτ(z)〈ρτ(z)〉 (S11)

gives the number of protonated τ-units between z and z + dz; similarly,

(1− gτ(z))〈ρτ(z)〉 (S12)

is the local density of these units in the deprotonated state.

• µ0
τ,p y µ0

τ,d are respectively the standard chemical potentials of the protonated and

deprotonated states of type-τ segments.

The surface free energy accounts for the chemical energy of the charged and protonated

acidic lipids and the mixture between them. This contribution can be expressed as

βFMS

A
= σI f I−(ln f I− + βµ0

I−)

+ σI
(
1− f I−

)[
ln
(
1− f I−

)
+ βµ0

IH
] (S13)

where

• σI is the surface density of ionizable lipid head-groups; similarly, σN is that of

neutral lipids.

• µ0
I− and µ0

IH are the standard chemical potentials of the dissociated (charged) and

protonated ionizable lipid, respectively.
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• f I− is the local degree of dissociation of the ionizable lipid, such that

σI− = f I−σI (S14)

is the area density of charged lipid, while

σIH = (1− f I−)σI (S15)

is the area density of uncharged ionizable lipid.

• The membrane-solution interface is fully occupied by lipid head-groups, which

means

σIaI + σNaN = 1 (S16)

where aI is the area occupied by a ionizable lipid (on the interface), and aN is that

of a single neutral lipid. Note that the fraction of area occupied by ionizable lipid is

xI = σIaI .

The electrostatic energy can be written as

βUE

A
=
∫ ∞

−hmem/2

[
〈ρq(z)〉βψ(z)− 1

2
βε(z)

(
∂ψ(z)

∂z

)2
]

dz

+ σI f I−qI−ψS

(S17)

where

• 〈ρq(z)〉 is the local charge density:

〈ρq(z)〉 = ∑
γ

ργ(z)qγ + ∑
τ

qτ fτ(z)〈ρτ (z)〉 (S18)

• fτ(z) is the local charge degree of τ units, such that the number density of charged
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τ units at position z is

fτ(z)〈ρτ(z)〉 (S19)

while the number density of uncharged τ units is

(1− fτ(z)) 〈ρτ(z)〉 (S20)

Note that fτ(z) is related to the degree of protonation gτ(z):

fτ(z) =


1− gτ(z) for acidic τ units

gτ(z) for basic τ units
(S21)

• qγ is the electric charge of the free species γ, qτ is that of charged titratable units of

the CPP, and qI− corresponds to the ionized lipid head -groups.

• ψ (z) is the local electrostatic potential, where

ψS = ψ(z = 0) (S22)

is its value at the membrane-solution interface.

• ε (z) if the medium permittivity, which is

ε(z) =


εw in the solution

εM inside the membrane
(S23)

The internal energy of lipid-peptide contacts, UAD, can be expressed as:

βUAD = A
∫ ∞

0
dz ∑

αP

ρp(αP, z)∑
η

βχηnη

(
αP, z, z′ = 0

)
(S24)
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where

• χη is the energy of a single contact between a η unit and the membrane surface; η

runs over all peptide units. In this work, we model each amino-acid residue as a

single coarse-grain particle, and assign χη = 0 for all residues except tryptophan

(χW 6= 0).

• nη (αP, z, z′ = 0) is the number of η residues in contact with the membrane surface,

for a peptide in conformation αP and center of mass at z. More generally, nη (αP, z, z′)

has been defined in the context of Eq. (S10).

Th steric interactions of Ust are included at the at the excluded volume level through the

incompressibility constraint that the equilibrium conditions must satisfy. The solution is

incompressible, which means that every element of volume must be completely occupied

by a combination of the different molecular species; this is

∑
γ∈{w,H+,OH−,+,−}

ργ(z)vγ + 〈φP(z)〉 = 1 (S25)

for all z > 0, where

• vγ is the molecular volume of species γ.

• 〈φP(z)〉 is the total volume fraction occupied by peptide units:

〈φP(z)〉 = ∑
η∈{η}

〈ρη(z)〉vη (S26)

where again η runs over all peptide units, including titratable and non-titratable

ones. Namely, the set {τ} is a subset of {η}.

• vη is the molecular volume of the peptide’s η unit.
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In addition, another constraint that the free energy (Eq. (S1)) must satisfy is

A
∫ ∞

0

[
∑
γ

ργ (z) qγ + ∑
τ

qτ fτ (z) 〈ρτ (z)〉
]

dz + AσIqI− f I− = 0 (S27)

which imposes global electroneutrality of the system.

After presenting expressions for all its contributions, the free is a functional of a few

functions, which remain to be determined:

i. ργ(z), the local number density of free species γ (for all γ’s).

ii. ρP(αP, z), the local number density of each peptide conformation.

iii. gτ(z) (or fτ(z)), the local degree of protonation (charge) of peptide titratable units.

iv. f I− , the degree of charge of ionizable lipid head-groups.

v. ψ(z), the local electrostatic potential, including ψS.

Any other quantity is either an input of the theory or it can be calculated using func-

tions (i) to (v). To obtain expressions for these functions (i-v), we optimize the proper

thermodynamic potential with respect to each of them.

For this system, the thermodynamic equilibrium corresponds to the minimum of the

semi-grand potential, Ω, which is function of the chemical potentials of all the solution

species. This is because the system is in chemical equilibrium with a bulk solution of

controlled composition. Thus,

Ω = F− ∑
γ∈{H+,OH−,+,−}

µγNγ − µPNP (S28)

where

• µγ, µP are the chemical potentials of free species γ and the peptide, respectively;
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Nγ y NP, represent the corresponding number of molecules.

• The sum over γ in Eq. (S28) excludes water because the incompressibility constraint,

Eq. (S25), reduces the number of independent variables. In addition, because of

Eq. (S16) the number of ionizable lipid molecules, NI = σI A, and that of neutral

lipids, NN = σN A, are not independent from each other. Namely,

Ω(T, V, A, NN, NI , µw, µH+ , µ+, µ−, µP) ≡ Ω(T, V, A, NI , µH+ , µ+, µ−, µP) (S29)

where the µ’s on the right-hand side of this equation are exchange chemical poten-

tials (likewise in Eq. (S28)).

Equation (S28) can be expressed as

Ω = F− ∑
γ∈{H+,OH−,+,−}

µγ

(
A
∫ ∞

0
dz ργ(z)

)

− µP

(
A
∫ ∞

0
dz ∑

αP∈{αP}
ρP(αP, z)

)

− µH+

[
A
∫ ∞

0
dz ∑

τ∈{τ}
gτ(z)〈ρτ(z)〉+ AσI

(
1− f I−

)]
(S30)

where the last term has been introduced to properly count protons, including free

hydronium ions (ρH+(z)), and those that protonate the titratable units of lipid head-

groups and peptides. In other words, these terms provide the proper NH+ that is

conjugated to µH+ .

To explicitly include the restriction of solution incompressibility, Eq. (S25), in the function

to optimize, we define:

βΦ = βΩ + A
∫ ∞

0
dz βπv(z)

 ∑
γ∈{w,H+,OH−,−,+}

ργ(z)vγ + 〈φP(z)〉 − 1

 (S31)

where
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• πv(z) is the local Lagrange multiplier introduced to reinforce the constraint at each

position.

Explicitly, the function to optimize is

βΦ = ∑
γ∈{w,H+,OH−,+,−}

A
∫ ∞

0
dz ργ(z)

[
ln
(
ργ(z)vw

)
− 1 + βµ0

γ

]
+ A

∫ ∞

0
dz ∑

αP∈{αP}
ρP(αP, z)

[
ln
(
ρP(αP, z)vw

)
− 1 + βµ0

P
]

+ A
∫ ∞

0
dz ∑

τ∈{τ}
〈ρτ(z)〉gτ(z)

[
ln
(

gτ(z)
)
+ βµ0

τ,p
]

+ A
∫ ∞

0
dz ∑

τ∈{τ}
〈ρτ(z)〉(1− gτ(z))

[
ln
(
1− gτ(z)

)
+ βµ0

τ,d
]

+ AσI f I−(ln f I− + βµ0
I−)

+ AσI
(
1− f I−

)[
ln
(
1− f I−

)
+ βµ0

IH
]

+ A
∫ ∞

−hmem/2
dz
[
〈ρq(z)〉βψ(z)− 1

2
βε(z)

(∂ψ(z)
∂z

)2]
+ AσI f I−qI βψS

− ∑
γ∈{H+,OH−,+,−}

βµγ

(
A
∫ ∞

0
dz ργ(z)

)

− βµH+

[
A
∫ ∞

0
dz ∑

τ∈{τ}
gτ(z)〈ρτ(z)〉+ σI

(
1− f I−

)]

− βµP

(
A
∫ ∞

0
dz ∑

αP∈{αP}
ρP(αP, z)

)

+ A
∫ ∞

0
dz βπv(z)

(
∑

γ∈{w,H+,OH−,−,+}
ργ(z)vγ + 〈φP(z)〉 − 1

)

(S32)

Note that we do not define a Lagrange multiplier to reinforce global electroneutrality,

Eq. (S27); this condition is achieved through (a) imposing the proper boundary conditions

to the solution of the Poisson Equation, and (b) considering the electroneutrality of the

bulk solution in chemical equilibrium with our system.
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Optimization with respect to ργ(z) leads to

ργ(z) =
eβµγ−βµ0

γ

vw
exp

(
− βπv(z)vγ − βψ(z)qγ

)
(S33)

which is valid for all small free species, including water with eβµw−βµ0
w = 1 and qw = 0.

The quantity

aγ = exp
(

βµγ − βµ0
γ

)
(S34)

is the activity of the species. All activities are completely determined once the composition

of the bulk solution is given (pH, salt concentration, and peptide concentration). Indeed,

we can write the number density of species γ as

ργ(z) =
ρb

γ

(vwρb
w)

vγ
vw

exp
(
− βπv(z)vγ − βψ(z)qγ

)
(S35)

where ρb
γ is the number density in the homogeneous bulk solution (ρb

w being that of

water).

Optimization with respect to fτ(z) leads to

fτ(z)
1− fτ(z)

=
f b
τ

1− f b
τ

e−βψ(z)qτ (S36)

where

• f b
τ is the degree of charge of the corresponding unit in the bulk, which is completely

determined by the intrinsic pKa of the isolated unit and the bulk solution pH:

f b
τ

1− f b
τ

=


K0

τ
aH+

for acidic τ units

aH+

K0
τ

for basic τ units
(S37)
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• K0
τ is the thermodynamic equilibrium constant of the acid-base reaction of τ units,

which satisfies

K0
τ = eβµ0

τ,p−βµ0
τ,d−βµ0

H+ (S38)

Optimization with respect to ρP(αP, z) leads to

ρP(αP, z) = xP exp
(
− A

∫ ∞

0
dz′MP(αP, z, z′)

)
(S39)

with

MP(αP, z, z′) = ∑
τ∈{τ}

nτ(αP, z, z′)
(

ln fτ(z′) + βψ(z′)
)

+ ∑
η∈{η}

nη(αP, z, z′)βπv(z′)vη

(S40)

and

xP = eβµP−βµ0
P ∏

τ∈{τ}

(
gb

τ

1− f b
τ

e−βµ0
τ,d

)Nτ

=
ρb

P(αP)

(ρb
w)

vP
vw

∏
τ∈{τ}

( f b
τ )

Nτ (S41)

where

• ρb
P(αP) is the density of peptide conformer αP in the bulk solution.

• gb
τ y f b

τ are degrees of protonation and charge in the bulk solution, respectively.

• Nη (or Nτ) is the total number of η units (or τ) in a peptide molecule:

Nη =
∫ ∞

0
dz′ nη(αP, z, z′) (S42)

independently of (αP, z), provided that the conformation fits in the system (i.e., it

does not protrude the membrane when the peptide places its center of mass at z);

otherwise, nη(αP, z, z′) ≡ 0 ∀z′ for this particular αP (other conformations might still

fit at z).
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• vP is the total volume of a peptide molecule:

vP = ∑
η∈{η}

Nηvη (S43)

where vη is the volume of a η unit.

• As expressed in Eq. (S41), xP can be calculated using the peptide concentration and

the degree of charge/protonation of all its units in the bulk solution.

• In the paper, we show the net charge of the peptide in the bulk solution:

Qpep = ∑
τ

Nτ f b
τ qτ (S44)

Optimization with respect to f I− leads to

f I−

1− f I−
=

K0
I

eβµH+−βµ0
H+

e−βψSqI (S45)

where K0
I is the thermodynamic equilibrium constant that describes the protonation/deprotonation

of lipid head-groups, which satisfies

K0
I = eβµ0

IH−βµ0
I−−βµ0

H+ (S46)

Using that eβµH+−βµ0
H+ =

vwρb
H+

(vwρb
w)

vH+
vw

, we can re-express Eq. (S45) as

f I−

1− f I−
=

(vwρb
w)

vH+
vw

vwρb
H+

K0
I e−βψSqI (S47)

Optimization with respect to ψ(z) leads to
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the Poisson equation:

∂2ψ

∂z2 = −
〈ρq(z)〉

εw
; z > 0 (in the solution)

∂2ψ

∂z2 = 0 ; −hmem

2
≤ z < 0 (inside the membrane)

(S48)

and the boundary conditions:

I. The electrostatic potential vanishes far from the membrane (in the bulk solution,

z→ ∞):

lim
z→∞

ψ(z) = 0 (S49)

II. In the membrane-solution interface (z = 0):

εw
∂ψ(z)

∂z
|z=0, solution −εM

∂ψ(z)
∂z

|z=0, membrane= σI f I−qI (S50)

III. Note that in writing Eq. (S48) we have imposed mirror symmetry of the system with

respect to the plane z = − hmem
2 , which implies

∂ψ

∂z

∣∣∣∣
z=−hmem/2

= 0 (S51)

At this point the only remaining unknowns are the local interaction potentials πv(z)

and ψ(z) (including ψS). These local potentials are obtained after numerically solving

the incompressibility constraint, Eq. (S25), the Poisson equation, Eq. (S48), for each z,

and the boundary condition at the membrane-solution interface, Eq. (S50). Once these

quantities have been calculated, all the functions that make the thermodynamic potential

are determined and any equilibrium property can be derived.

Our theory is set in the semi-grand canonical ensemble, where the thermodynamic

potential, whose minimum yields the equilibrium, is a function of the chemical potential
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of all free species (see Eq. (S29)). The membrane composition, however, is fixed, and lipids

can only modify the protonation state of their head-groups ( f I−). In previous work, we

have applied the same theory, but considered the case where lipids are allowed to leave

or enter the system.? Within this mean-field treatment, changes in lipid composition are

only important when there is no symmetry in the plane of the membrane surface, due to

the presence of a pore for example (see Fig. 8 in ?).

1.2 Bulk Solution

Let us consider the homogeneous solution that is in chemical equilibrium with the system

described in Section 1.1. This bulk solution contains water molecules, hydronium ions,

hydroxyde ions, salt ions, and peptides. Once, the pH, salt concentration, and peptide

concentration are all set, the composition of this solution is completely defined. Namely,

the concentration of each of the chemical species in the bulk solution is experimentally

controlled.

The Helmholtz free energy of this bulk solution, Fb, can be expressed as

β
Fb
V

= ∑
γ∈{w,H+,OH−,+,−}

ρb
γ

(
ln
(
ρb

γvw
)
− 1 + βµ0

γ

)
+ ∑

αP∈{αP}
ρb

P(αP)
(

ln
(
ρb

P(αP)vw
)
− 1 + βµ0

P

)
+ ∑

τ∈{τ}
〈ρb

τ〉
[

gb
τ

(
ln gb

τ + βµ0
t,d
)
+ (1− gb

τ)
(

ln(1− gb
τ) + βµ0

τ,p

)] (S52)

where:

• V is the system’s volume.

• All functions/quantities are independent of position. Superscript/subscript ”b”

indicates the value of the function in the bulk solution (sufficiently far from the

S18



membrane). For example, the bulk degree of protonation of peptide τ units is

lim
z→∞

gτ(z) = gb
τ (S53)

• We have arbitrarily chosen the value ψb = 0, for the constant electrostatic potential.

• The density of peptide’s η units is

〈ρb
η〉 = Nη ∑

αP∈{αP}
ρb

P(αP) = Nη〈ρb
P〉 (S54)

which is true for all types of units, including titratable ones, {τ} ∈ {η}.

In addition, the minimum of the thermodynamic potential must be consistent with two

physical restrictions. First, the chemical solution is incompressible:

∑
γ∈{w,H+,OH−,+,−}

ρb
γvγ + vP〈ρb

P〉 = 1 (S55)

Second, the solution is charge-neutral:

〈ρb
q〉 = ∑

γ∈{H+,OH−,+,−}
ρb

γqγ + ∑
τ∈{τ}

〈ρb
τ〉 f b

τ qτ = 0 (S56)

where 〈ρb
q〉 is the density of electric charge.

The densities all free species in the bulk solution are a required input of any given

calculation of the equilibrium conditions of the membrane-solution system, described in

Section 1.1. The bulk peptide concentration defines 〈ρb
P〉 and 〈ρb

η〉 = Nη〈ρb
P〉 for each of

its units. In addition, we assume that all nc peptide conformations are equally probable

in the bulk solution (see Eq. (S8)), which means that ρb
P(αP) =

〈ρb
P〉

nc
. The bulk solution pH

determines ρb
H+ and ρb

OH− , using self-dissociation of water. Then, the salt concentration

and the electroneutrality condition, Eq. (S56), are used to obtain ρb
+, ρb

−. Finally, ρb
w results

S19



from solving the incompressibility of the bulk solution, Eq. (S55).

1.3 Numerical Method

To calculate results, we need to solve the incompressibility constraint, Eq. (S25), and the

Poisson equation, Eq. (S48), with its boundary conditions. To such goal, we discretize the

z-coordinate in layers of thickness δ = 0.5 nm. The number of layers considered is large

enough so that both the local osmotic pressure, πv(z), and the electrostatic potential, ψ(z),

converge smoothly to their bulk values; typically we use 50− 200 layers (at 0.1 M salt

concentration). To solve the equations we use an iterative Jacobian-free Newton-Krylov

method and a FORTRAN 95 code developed in house. Typically, running an alpha-helix

peptide from pH 1 to pH 10 with a step interval, ∆pH = 0.25 can take around one

week in a Intel Core i7-4790 CPU @ 3.60GHz. This time is greatly increased for the

TAT peptide since we explicitly considered 5000 conformations of TAT. Simulation time

depends mainly on the number of peptide conformations and the size of the peptide (and

the salt concentration).

A repository with the code can be found at: https://github.com/BIOS-IMASL/patlm.

2 Comments on the Molecular Model

2.1 Value of χW

Tryptophan has various physical properties that makes it the optimal amphipathic residue

for the stabilization of peptides and proteins at water-lipid membrane interfaces.? ? ?

To model the adsorption of hydrophobic residues to lipid bilayers, we have included a

term in the thermodynamic potential that describes the internal energy of tryptophan-
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membrane contacts, UAD. This adsorption energy is quantified by the Flory-Huggins

interaction parameter χW . The particular value assigned to the tryptophan-membrane

interaction parameter deserves a special note.

Figure S1: (A) Local PMF and (B) PMFmin of R6W3 for different tryptophan χ parameters.
[CPP] = 1 µM, [NaCl] = 0.1 M and pH 7; membrane has 20% ionizable lipid with
pKa = 4.5. PMFmin corresponds to the global minimum of PMF(z) (z =distance from
membrane surface).

Dimerization free energies of small hydrophobic molecules at room temperature are

generally around −10 kJ mol−1 (−4kBT).? For example, the vapor pressure studies of ?

reported free energy values of −2 to −2.7 kcal mol−1 (−3.4 to −4.6kBT) for the dimeriza-

tion of some hydrocarbons in water near room temperature. Using different spectroscopy

techniques, ? suggested that the molecular interactions between tryptophan and a lipid

bilayer at the interface with water can aid and stabilize protein folding by approximately

2 kcal mol−1 (3.4kBT).

Then, we use χW = −3kBT in this work, but in order to assess the effect of this parameter,

we have performed calculations using χW = 0 and −5kBT as well. Figure S1 shows

results for the adsorption of R6W3 under identical conditions but using these different

χW values. When χW = 0 at very acidic pHs, PMFmin = 0. This is because at this pH the

lipids are fully protonated, which results in no electrostatic interactions with the peptide;

there is no driving force for peptide adsorption. When χW < 0 there is an attractive

PMFmin at acidic pHs, which becomes more negative when χW decreases from −3 to
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−5kBT.

2.2 Peptide Configurations

Random coil peptides are modeled using a Rotational Isomeric States (RIS) method,? in

which each 0.38 nm-long segment can assume one of three isoenergetic orientations.? The

number of generated conformations nc using the RIS model is in the order of nc = 3L−2;

where L is the number of residues in the sequence. In this way, nc grows exponentially

with L. For L > 9 the total number of conformations increases the computational

cost of the simulations sufficiently to render our calculations impractical. Particularly

problematic is the TAT peptide having L = 13. To solve the intractability of this peptide,

after each of the generated conformations were rotated 50 times using randomly generated

Euler angles, 5000 of these conformations were randomly selected to be included in the

calculations. To maintain the same ratio of selected/total conformations for both random

coil peptides, 69 previously-rotated conformations of the R9 peptide are randomly

included in our calculations.

3 Additional Results

3.1 Adsorption Isotherms

The adsorption isotherms for the different peptides are displayed in Figure S2A. Panel

B shows PMFmin, the global minimum of PMF(z), for the same conditions; PMFmin

represents the adsorption free energy.
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Figure S2: (A) Adsorption excess, Γmem, and (B) adsorption free energy, PMFmin, as a
function of peptide concentration (in the bulk solution); pH 7 and [NaCl] = 0.1 M; the
membrane has a 20% of ionizable lipid with pKa = 4.5.

3.2 Ionizable Lipid Fraction

Additional results on the effects of the area fraction occupied by ionizable lipid are

presented in Figure S3. Panel A shows the global minimum of the PMF(z), PMFmin

as function of the solution pH for R9 solutions (where z = is the distance from the

membrane surface). The different curves correspond to membranes having different

acidic lipid composition: 10%, 20% and 40% of the total area. Panel B of Figure S3

presents the adsorption, Γmem, at pH 7 as function of the fraction of ionizable lipid in the

membrane.

Figure S3: A: PMF minimum as a function of pH for membranes having different area
fraction of ionizable lipids, xI . B: Adsorption as a function of the fraction of ionizable
lipids at pH 7. In both panels [CPP] = 1 µM and [NaCl] = 0.1 M; lipid pKa = 4.5.
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3.3 Membrane Surface Charge and Local pH

In Figure S4 we show that CPP adsorption (at [CPP] = 1 µM) does not significantly affect

the charge density on the membrane surface, σI− . Due to dissociation of the ionizable

lipids’ head-groups, surface charge depends strongly on the solution pH.

Figure S4: Surface charge density on the membrane surface (in absolute value) as a
function of pH for different 1 µM peptide solutions. The dashed line corresponds to a
solution without peptides ([CPP] = 0). [NaCl] = 0.1 M; membrane has a 20% of ionizable
lipid with pKa = 4.5.

The small changes in charge density following the adsorption of different peptides, seen

in Figure S4, result from lipid protonation/deprotonation; upon peptide adsorption, a

different local pH establishes near the membrane surface. This behavior is illustrated in

Figure S5 that displays local pH profiles for the adsorption of different CPPs. In addition,

Fig. S6 shows local pH profiles for the different permutations of R6W3 discussed in Figs.

6 and 7 of the paper.
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Figure S5: Local pH as a function of the distance from the membrane, for different
peptide solutions; [NaCl] = 0.1 M, [CPP] = 1 µM (solid lines) and pH 7; membrane has a
20% of ionizable lipid with pKa = 4.5. These conditions correspond to those of Fig. 3 in
the paper.

Figure S6: Local pH as a function of the distance from the membrane, for different R6W3
permutations; [NaCl] = 0.1 M, [CPP] = 1 µM (solid lines) and pH 7; membrane has a 20%
of ionizable lipid with pKa = 4.5. These conditions correspond to those of Fig. 7 in the
paper.

3.4 Local Water and Salt Ions Distributions

How are water molecules and salt ions distributed near the membrane surface? To answer

this question, Fig. S7 shows the volume fraction of water as a function of the distance
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to the membrane surface. Similarly, Fig. S8 shows the concentration of salt anions as a

function of position, while Fig. S9 shows that of salt cations. These figures include curves

for different peptides solutions (solid lines), which correspond to the same conditions of

Fig. 3 of the paper; distributions corresponding to solutions without peptides are also

included in these graphs (dashed lines).

Figure S7: Local water volume fraction as a function of the distance from the membrane,
for different peptide solutions; [NaCl] = 0.1 M, [CPP] = 1 µM (solid lines) and pH 7;
membrane has a 20% of ionizable lipid with pKa = 4.5. These conditions correspond to
those of Fig. 3 in the paper.
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Figure S8: Local chloride ion concentration as a function of the distance from the
membrane, for different peptide solutions; [NaCl] = 0.1 M, [CPP] = 1 µM (solid lines)
and pH 7; membrane has a 20% of ionizable lipid with pKa = 4.5. These conditions
correspond to those of Fig. 3 in the paper.

Figure S9: Local sodium ion concentration as a function of the distance from the mem-
brane, for different peptide solutions; [NaCl] = 0.1 M, [CPP] = 1 µM (solid lines) and
pH 7; membrane has a 20% of ionizable lipid with pKa = 4.5. These conditions corre-
spond to those of Fig. 3 in the paper.

3.5 Volume Fraction Distributions: TAT and Penetratin

Figure 5 in the paper shows the volume fraction occupied by different groups of amino-

acids as a function of the distance from the membrane surface for some CPPs. Figure S10
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shows those volume fractions profiles for TAT and Penetratin.

Figure S10: Local volume fractions occupied by each type of residue as a function of
the distance to the membrane surface (z = 0) for Penetratin (A) and TAT (B) peptides.
Residues are divided into positively (res+) and negatively charged (res−), and charge
neutral, according to their charge at pH 7. The membrane has 20% ionizable lipid with
pKa = 4.5; [CPP] = 1 µM, [NaCl] = 0.1 M and pH 7. Solid lines correspond to point
interpolation using Akima splines.
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