Supplementary Materials for

Ternary multicomponent Ba/Mg/Si compounds with inherent bonding hierarchy and rattling Ba atoms toward low lattice thermal conductivity

Jingyu Li,^{1,}† Jinfeng Yang,^{1,}† Beibei Shi,¹ Wenya Zhai,¹ Chi Zhang,² Yuli Yan,^{1,*} Pengfei Liu, ^{3,4*}

¹ Institute for Computational Materials Science, School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University

²College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China

³Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China

⁴Spallation Neutron Source Science Center, Dongguan 523803, China

*Corresponding author: <u>ylyan@henu.edu.cn</u> (Y. Yan) <u>pfliu@ihep.ac.cn</u> (P-F. Liu)

†These authors contributed equally to this work.

 $\label{eq:sigma} Figure S1: The crystal structures, electron localization function (ELF) plots of the three-dimensional (3D) for (a and b) BaMgSi, (c and d) Ba_2Mg_3Si_4, and (e and f) BaMg_2Si_2.$

Figure S2: Calculated potential energy surface as a function of displacements of atoms from their equilibrium positions for (a) BaMgSi, and (b) BaMg2Si₂.

Figure S3: The highlighted phonon dispersion for (a) BaMgSi, (b)Ba2Mg3Si4, and (c) BaMg2Si2.

Figure S4: The zoomed-in region for P1-P5 point.

Table S1: The lattice parameters and group spaces for BaMgSi, $Ba_2Mg_3Si_4$, and $BaMg_2Si_2$.

Compounds	Structure	Space group	Lattice parameter (Å)		
Ĩ		1 0 1	a	b	с
BaMgSi	Orthorhombic	Pnma	8.21207	4.77347	8.64639
$Ba_2Mg_3Si_4$	Monoclinic	C_2/m	4.63413	12.14644	15.69401
$BaMg_2Si_2$	Tetragonal	I ₄ /mmm	4.66514	4.66514	11.04962

Figure S5: The phonon dispersion for (a) BaMgSi, (b)Ba₂Mg₃Si₄, and (c) BaMg₂Si₂. Three green, red, blue, and the black lines are TA, LA, ZA acoustic branches, and optical branches, respectively.