Dynamic coupling of hydration layer to a fluid phospholipid membrane: Intermittency and multiple time-scale relaxations

Abhinav Srivastava[†]*, Sheeba Malik[†]*, Smarajit Karmakar[‡] and Ananya Debnath[†]

[†]Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India. [‡]Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500107, India.

Figure S1 RDF of a) oxygen-oxygen of IW, of b) lipid components from head to tail along the chain.

Figure S2 Density profiles of different lipid head moieties and IW^{HB} hydrogen bonded to those moieties along the bilayer normal. The profiles are averaged over 10 sets of a) 100 ps and b) 1 ns runlengths. Different classes of IW^{HB} are confined close to the peak location of N and form hydrogen bonds to oxygens of P, Carb, Glyc. With time, the IW^{HB} molecules diffuse towards bulk water (BW) region.

Beads t_2 t₃ t_6 t_9 t_1 t_4 t_5 t_7 t_8 t_{10} (ps) IWHB 6.07 5.11 5.75 6.51 5.02 5.08 7.86 5.51 6.58 5.37 IW-CO^{HB} $6.94 \ 5.93 \ 6.22 \ 7.06 \ 5.71 \ 5.56 \ 8.56 \ 5.68 \ 6.70 \ 6.03$ IW-Glyc^{HB} 6.26 5.22 6.05 8.11 5.60 5.89 10.70 5.87 6.74 6.11 IW-PO^{HB} $6.14 \ 5.06 \ 5.74 \ 6.46 \ 3.73 \ 5.10 \ 7.44 \ \ 5.45 \ 6.34 \ 5.31$

Table S1 Time-scales when IW^{HB} molecules enter sub-diffusive regime for 10 independent sets each with 1 ns run length.

Table S2 Time-scales when IW^d molecules enter sub-diffusive regime for 10 independent sets each with 1 ns run length.

Beads	t_1	<i>t</i> ₂	t ₃	t_4	<i>t</i> ₅	t_6	t ₇	<i>t</i> ₈	t9	<i>t</i> ₁₀
	(ps)	(ps)	(ps)	(ps)	(ps)	(ps)	(ps)	(ps)	(ps)	(ps)
IW-CO ^d	12.61	10.90	11.62	12.98	11.78	9.69	10.63	13.36	12.42	12.83
IW-Glyc ^d	12.91	10.77	11.17	12.51	8.76	12.16	8.18	11.82	13.49	10.80
IW-PO ^d	7.87	7.38	7.24	6.01	7.30	6.36	6.07	7.18	6.86	7.24
IW-N ^d	6.51	5.78	5.45	4.96	6.37	5.71	5.32	6.00	5.48	5.91

Table S3 Time-scales when DMPC beads enter sub-diffusive regime for 10 independent sets each with 1 ns run length.

Beads	<i>t</i> ₁	<i>t</i> ₂	<i>t</i> ₃	<i>t</i> ₄	<i>t</i> ₅	t_6	<i>t</i> ₇	<i>t</i> ₈	<i>t</i> 9	<i>t</i> ₁₀
	(ps)	(ps)	(ps)	(ps)	(ps)	(ps)	(ps)	(ps)	(ps)	(ps)
Carb _{Head}	169.29	85.70	199.22	156.31	175.01	196.71	154.36	187.35	147.32	91.92
Glyc _{Head}	180.70	97.43	218.87	165.34	289.77	217.72	177.55	199.95	164.09	302.62
P _{Head}	118.60	73.77	162.12	127.27	134.01	147.51	131.88	126.11	107.99	189.72
N _{Head}	73.04	89.92	83.45	83.44	77.28	88.29	81.30	80.22	69.70	86.81
B1 _{Tail}	73.19	87.14	77.66	77.66	71.82	83.90	71.04	84.10	73.52	93.25
B2 _{Tail}	18.93	19.38	18.65	18.65	19.59	19.26	18.79	19.02	19.63	18.01
B3 _{Tail}	2.97	3.11	2.86	2.86	2.93	2.82	2.84	2.96	2.90	3.07

Table S4 Fitting parameters of SISFs of all classes of IW^{HB} and BW calculated at $\lambda = 0.6$ nm. Correlation coefficients were >0.99.

Region	$ au_s$	fq	$ au_{lpha}$	β_{α}	$f_{Q'}$	$ au_l$	β_l
	(ps)		(ps)			(ps)	
IW^N	0.24	0.50	3.49	0.91	0.45	43.00	0.62
IW-PO ^{HB}	0.21	0.41	3.40	0.93	0.58	24.42	0.51
IW-CO ^{HB}	0.25	0.36	4.03	0.94	0.59	31.54	0.53
IW-Glyc ^{HB}	0.22	0.33	3.90	0.99	0.64	30.64	0.54
BW	0.10	0.90	3.54	0.94			

Table S5 Fitting parameters of SISFs of all classes of IW^d calculated at $\lambda = 0.6$ nm. Correlation coefficients were >0.99.

Region	τ_s (ps)	fq	τ_{α} (ps)	β_{α}	$f_{Q'}$	τ_l (ps)	β_l
my Nd	0.0	0.52	2.50	0.00	0.40	4.4	0.64
IW-N ^a	0.2	0.53	3.39	0.89	0.42	44	0.64
IW-PO ^a	0.28	0.52	5.0	0.76	0.41	62	0.64
IW-Glyc ^a	0.54	0.59	16.0	0.47	0.361	100	0.64
IW-CO ^a	0.84	0.63	21.14	0.47	0.33	106.04	0.63

Table S6 Fitting parameters of SISFs of all classes of IW^{HB} at $\lambda = 0.3$ nm. Correlation coefficients were >0.99.

Region	τ_s (ps)	fq	τ_{α} (ps)	β_{α}	f _{Q'}	τ_l (ps)	β_l
TNV/HB	0.16	0.46	1.07	0.00	0.21	7.02	0.55
IW^{HB}	0.16	0.46	1.07	0.90	0.31	7.92 8.02	0.55
IW-CO ^{HB}	0.10	0.30	0.97	0.85	0.30	8.02 8.00	0.51
IW-Glyc ^{HB}	0.19	0.42	0.91	0.82	0.36	8.23	0.54

Table S7 Fitting parameters of SISFs of all classes of IW^d calculated at $\lambda = 0.3$ nm. The fittings of τ_s are comparatively poor to the ones at higher λ to obtain physically meaningful parameters. Correlation coefficients were >0.99.

Region	τ_s (ps)	fq	τ_{α} (ps)	β_{α}	$f_{Q'}$	τ_l (ps)	β_l
IW-N ^d	0.20	0.52	1.097	0.74	0.23	11.47	0.62
IW-PO ^a IW-Glyc ^d	0.22 0.27	0.51 0.63	1.50 2.419	0.66 0.456	0.235 0.18	16.09 27.82	0.62 0.62
IW-CO ^d	0.30	0.80	3.90	0.41	0.06	29.5	0.62

Table S8 Scaling factors for fig. 13 (a) -(i)

	Region	DMPC	$\lambda = 0.80 \text{ nm}$		$\lambda = 0.60 \text{ nm}$		$\lambda = 0.30 \text{ nm}$	
	_		IW ^{HB}	IW^d	IW ^{HB}	IW^d	IW ^{HB}	IW^d
(a)-(c)	Ν	1.00	1.00	1.00	1.14	1.00	1.00	1.00
$ au_s$	Р	1.08	1.10	2.21	1.10	1.40	1.10	1.10
	Glyc	1.31	1.10	3.04	1.04	2.70	1.25	1.35
	Carb	1.36	1.02	5.05	1.19	4.20	1.18	1.50
(d)-(f)	Ν	1.00	1.00	1.00	1.02	1.00	1.18	1.00
$ au_{lpha}$	Р	1.33	1.41	1.41	1.00	1.39	1.07	1.37
	Glyc	1.93	1.33	3.02	1.14	4.45	1.01	2.21
	Carb	2.04	1.24	7.71	1.18	5.96	1.00	3.57
(g)-(i)	Ν	1.00	1.00	1.00	1.76	1.00	1.18	1.00
$\tau_{\alpha}(\text{DMPC})$	Р	1.33	1.04	1.40	1.00	1.40	1.01	1.40
$\tau_l(\mathrm{IW})$	Glyc	1.93	1.20	2.40	1.25	2.27	1.03	1.42
	Carb	2.04	1.07	2.88	1.29	2.40	1.01	2.57

Figure S3 Two dimensional translational mean square displacement (MSD_{XY}) of all beads of DMPC, IW^{HB} and BW.

Figure S5 SISF for all classes of a) IW^{HB} , b) IW^d at $\lambda = 0.60$ nm. IW-CO^d molecules buried deep in the hydrophobic core relax slowest.

Figure S4 One dimensional van Hove correlation function of DMPC beads and IW^{HB}. End beads of lipid tails have minimum deviations from Gaussianity.

Figure S6 SISF for all classes of a) IW^{HB}, b) IW^d at $\lambda = 0.30$ nm. IW-CO^d molecules buried deep in the hydrophobic core relax slowest.