Supplementary Information

Two-dimensional CaFCI: Ultra-wide bandgap, strong interlayer

quantum confinement, and n-type doping

Xiao-Juan Ye^I, Zhen-Xue Zhu^I, Lan Meng, and Chun-Sheng Liu^{*} College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

^{*} To whom correspondences should be addressed, E-mail: csliu@njupt.edu.cn

¹The first two authors contributed equally to this work.

I. The band structure under uniaxial strains

Fig. S1. The band structures of monolayer CaFCl under uniaxial strains along (a) *a* and (b) *b* directions.

II. PDOS under uniaxial strains

Fig. S2. The PDOS of monolayer CaFCl under -4%, -2%, 2%, and +4% uniaxial strains.

III. The band structure under biaxial strains

Fig. S3. The band structures of monolayer CaFCl under different biaxial strains.

IV. The relaxed structures of TTF/CaFCl

Fig. S4. Top and side views of optimized structures for TTF interacting with CaFCl monolayer. The adsorption energies and heights between the molecule and the CaFCl monolayer are also illustrated.

V. Computation detail of the minimum vertical distance

Fig. S5. Relative adsorption energies of the most stable configuration for TTF/CaFCl as a function of the vertical distance.

VI. The highest occupied molecular orbital of the TTF/CaFCl system

Fig. S6. The highest occupied molecular orbital of TTF/CaFCl at Γ point. The isovalue is set to 0.03 Å⁻³.

VII. Computation detail of in-plane Young's modulus (Y_{2D})

The in-plane Young's modulus along *a* or *b* can be derived from $\frac{\Delta E}{S_0} = Y_D \frac{\left(\Delta l / l_0\right)^2}{2}$,

where ΔE is the total energy difference under each strain, and S_0 is the lattice area of monolayer CaFCl. We use $\Delta l/l_0$ ranging from -1.5% to 1.5% to fit the value of Y_{2D} (Fig.

Fig. S7. In-plane Young's modulus of monolayer CaFCl along *a* direction. The fitted curve along *b* direction is consistent with that along *a* direction.