Supporting Information

Disclosing the behavior under hydrostatic pressure of rhombohedral MgIn₂Se₄ by means of first-principles calculations

Khaled Boukri^{*a*}, Tarik Ouahrani ^{*a,b,**}, Michael Badawi^{*c*}, Kamel Demmouche^{*d*}, Ruth Franco^{*e*} and J. Manuel Recio^{*e,**}

Received Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX

First published on the web Xth XXXXXXXXX 200X

DOI: 10.1039/b000000x

Fig. 1 Polyhedral views of (a) direct spinel, (b) inverse spinel, (c) $LiTiO_2$ -type, and (d) $\overline{I}4$ polymorphs of $MgIn_2Se_4$.

^a Laboratoire de Physique Théorique, Université de Tlemcen 13000 Algeria. Tel:+21343201824; E-mail: tarik_ouahrani@yahoo.fr

^b École supérieure en sciences appliquées, B.P. 165, Tlemcen 13000, Algeria.

^c Université de Lorraine and CNRS, LPCT, UMR 7019, 54506 Vandoeuvre-lés-Nancy, France

^d Institut des Sciences, Centre Universitaire -Belhadj Bouchaib- Ain Temouchent, B.P. 284, 46000 Ain Temouchent, Algeria

^e MALTA-Consolider Team and Departamento de Química Física y Analítica, Universidad de Oviedo, E-33006 Oviedo Spain

Fig. 2 Test of energy convergence with the plane wave kinetic energy cutoff (E_{cut}). (Top) Total energy (E) and (bottom) relative total energy ($E - E_{360}$) versus E_{cut} for the five MgIn₂Se₄ polymorphs explored in this work. E_{360} is the energy when $E_{cut} = 360$ eV for each polymorph.

This journal is © The Royal Society of Chemistry [year]

Fig. 3 Volume dependence of the electronic energy of MgIn₂Se₄ according to GGA-PBE+D3 calculations for the $R\bar{3}m(a)$, *Imma* inverse spinel(b), $Fd\bar{3}m(c)$, *Imma* LiTiO₂-type(d), and $I\bar{4}(e)$, structures. Symbols stand for the calculated values, whereas lines are a guide to the eye. All values for formula unit.

Fig. 4 Phonon dispersion curves calculated at GGA-PBE+D3 level for the $R\bar{3}m$ phase at zero pressure.

Fig. 5 Pressure dependence of the Gibbs energy at GGA-PBE+D3 level at static conditions.

Fig. 6 Phonon dispersion curves calculated at GGA-PBE+D3 level for the $R\bar{3}m$ phase at 1.5 GPa.

Fig. 7 Phonon dispersion curves calculated at GGA-PBE+D3 level for the inverse spinel phase at 2.5 GPa.

Fig. 8 Phonon dispersion curves calculated at GGA-PBE+D3 level for the direct spinel phase at 5 GPa.

Fig. 9 Pressure evolution of the band gap of the $R\bar{3}m$, Inverse and direct spinel polymorphs according to our calculations using the hybrid HSE06 functional.

Atom	Wyckoff position	х	у	z
	Rhombohedra	$\mathrm{ll}(R\bar{3}m),Z=$	3	
LDA+D3				
In1	6c	0.00000	0.00000	0.23524
Se1	6c	0.00000	0.00000	0.12966
Se2	6c	0.00000	0.00000	0.29935
GGA-PBE+D3				
In1	6c	0.00000	0.00000	0.23709
Se1	6c	0.00000	0.00000	0.12673
Se2	6с	0.00000	0.00000	0.30002
	Inverse spinel	(Imma), Z =	4	
LDA+D3				
In2	4e	0.00000	0.25000	0.13398
Se1	8h	0.00000	0.02542	0.74334
Se2	8i	0.23719	0.25000	0.50907
GGA-PBE+D3				
In2	4e	0.00000	0.25000	0.13362
Se1	8h	0.00000	0.02518	0.74339
Se2	8i	0.23721	0.25000	0.50946
	Direct spinel	$(Fd\bar{3}m), Z =$	8	
LDA+D3				
Se1	32e	0.75692	0.75692	0.75692
GGA-PBE+D3				
Se1	32e	0.75654	0.75654	0.75654
	LiTiO2-type	(Imma), Z = 4	4	
LDA+D3				
Se1	8h	0.00000	-0.00783	0.74285
Se2	8i	0.25354	0.25000	0.50167
GGA-PBE+D3				
Se1	8h	0.00000	-0.00642	0.74352
Se2	8i	0.25326	0.25000	0.50175
	Defective	$(I\bar{4}), Z = 2$		
LDA+D3				
Se	1 8g	0.21618	0.72006	0.36085
GGA-PBE+D3				
Se1	8g	0.21593	0.72217	0.36193

Table 1 Crystallographic coordinates of atoms in the five polymorphs of $MgIn_2Se_4$ explored in this work. The space group, symmetry multiplicity, and the number of formula units (*Z*) are given.