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Abstract
This supplemental material contains a demonstra-
tion of the effect of scaling the strengths of inter-
actions in a model system, the implementation de-
tails of the scaling of interactions in the density-
functional tight-binding (DFTB) method, in the
charge-optimized many-body (COMB) potential
and in the CHARMM force field, the derivation of
the z-vector method in the density-corrected pre-
scaled algorithm, and the QM charges of n-butanol
and n-butoxide anion.

1 The effect of scaling in a two-
level model system

The QM calculation in the SISPA method is car-
ried out with scaled interactions. I demonstrate
with a simple model that the SISPA energy and
forces change in a non-linear fashion with scal-
ing factors, unlike in PAP and other AP-QM/MM
methods with multiple QM calculations per time
step.

Here I consider a model system of two identical
atoms (A and B) with one basis function on each
(φ1 and φ2) and ignore the MM potential. The
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distance between the atoms is R. The unscaled
Hamiltonian and overlap matrices of the model
system are

H =

(
ε v
v ε

)
, (1)

and

S =

(
1 s
s 1

)
. (2)

The corresponding orbitals and orbital energies are

ψ±(~r) =
1√
2
(φ1(~r)±φ2(~r)) , (3)

ε± =
ε± v
1± s

. (4)

Assuming ε+ < ε−, the DFTB bond energy is

Eb = E−2ε

= 2〈ψ+ |H|ψ+〉+Erep−2ε

=
2(v− εs)

1+ s
+Erep,

(5)

where Erep is the repulsive correction to the energy
in DFTB.1,2 The forces on atoms A and B are

~FA =−∂Eb

∂R
∇~RA

R,

~FB =−∂Eb

∂R
∇~RB

R.
(6)

1

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2020

yangzenghui@mtrc.ac.cn


Define F =−∂Eb/∂R, I have

F =−∂Eb

∂R

=−2
(

∂v
∂R
− ε + v

1+ s
∂ s
∂R

)
− ∂Erep

∂R
.

(7)

Choosing atom A as the center and atom B as
a buffer atom, H and S becomes the following in
SISPA:

H =

(
ε λv

λv ε

)
, (8)

and

S =

(
1 λ s

λ s 1

)
, (9)

where λ is the scaling factor of atom B. The SISPA
bond energy and the magnitude of the forces of the
model system are

ESISPA
b =

2λ (v− εs)
1+λ s

+λErep, (10)

FSISPA =− 2λ

1+λ s

(
∂v
∂R
− ε +λv

1+λ s
∂ s
∂R

)
−λ

∂Erep

∂R

−
∂ESISPA

b
∂λ

∂λ

∂R
.

(11)

As a comparison, the bond energy and the mag-
nitude of the forces with PAP are

EPAP
b = λE +(1−λ )εB−2ε

= λ

(
2v+ ε(1− s)

1+ s

)
− ε,

(12)

and

FPAP =− 2λ

1+ s

(
∂v
∂R
− ε + v

1+ s
∂ s
∂R

)
−λ

∂Erep

∂R

−
∂EPAP

b
∂λ

∂λ

∂R
.

(13)

Aside from the transition forces that are present in
both SISPA and PAP, EPAP

b and FPAP depend on λ

linearly, while ESISPA
b and FSISPA has a non-linear

dependence on λ .

2 Scaling of interactions in the
DFTB method

The DFTB method employs a valence-only atom-
centered localized basis set. The Hamiltonian ma-
trix elements are approximated by two-center in-
tegrals, which are further approximated by replac-
ing the integrals with interpolations. SCC-DFTB3

extends the original DFTB1 by associating the
atoms with self-consistent Mulliken-type partial
charges.4 This introduces long-range Coulomb
interaction to the DFTB approximation, which
greatly improved the accuracy and transferability
of the method.

The unscaled QM potential energy of SCC-
DFTB including the QM/MM coupling is

V QM =V QM
0 +

1
2

QM

∑
αβ

∑
l∈α

l′∈β

γαl
β l′

∆qαl∆qβ l′

+
QM

∑
α

MM

∑
A

(
EvdW

αA + γ
MM
αA qMM

A ∑
l∈α

∆qαl

)
,

(14)

with V QM
0 being the QM potential energy of the

original DFTB:

V QM
0 =

occ

∑
i

niεi +
1
2

QM

∑
αβ

(Erep
αβ

+EvdW
αβ

). (15)

In Eqs. (14) and (15), ni and εi respectively are
the occupation number and orbital energy of or-
bital i, α,β denotes atoms, Erep and EvdW are
the repulsive correction1,5 and dispersion inter-
action energy6,7 between two atoms, l, l′ denotes
the angular momentum quantum number (‘shel-
l’8 in the following) of the basis functions as-
sociated with atom α and β , γ is the interac-
tion parameter representing the Hartree and xc in-
teractions between two shell-resolved QM partial
charges,3,9 γMM is the interaction parameter rep-
resenting the Columbic interaction between a QM
partial charge and an MM charge, and the shell-
resolved Mulliken-type partial charge ∆q is de-
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fined as

∆qα∈QM,l = qαl−q0,αl, (16)

qα∈QM,l =
occ

∑
i

ni ∑
µ∈α,l

∑
ν

cµicν iSµν , (17)

where µ , ν label atom-centered basis functions,
cµi is the expansion coefficient of the one-electron
Kohn-Sham (KS) orbital ψi on basis φµ , so that

ψi(~r) = ∑
µ

cµ pφµ(~r). (18)

I label occupied orbitals with i, j, virtual orbitals
with a, b, and general orbitals with p, q. q0,αl is
qαl evaluated on isolated atom α . The KS orbitals
in terms of the c coefficients are obtained from the
KS equation

∑
ν

(Hµν − εpSµν)cν p = 0, (19)

where Hµν and Sµν =< µ|ν > are respectively the
Hamiltonian and overlap matrix elements, and εp
is the orbital energy of orbital p. Hµν of SCC-
DFTB is defined by

Hµν =H0,µν +
1
2

Sµν

QM

∑
β

∑
l′∈β

(
γα(µ)l(µ)

β l′
+ γα(ν)l(ν)

β l′

)
∆qβ l′

+
1
2

Sµν

MM

∑
A

(
γ

MM
α(µ)A + γ

MM
α(ν)A

)
qMM

A

(20)

where H0 is the Hamiltonian of the original DFTB
method

H0,µν =


εµ µ = ν ,〈

µ

∣∣∣T̂ +V α(µ)
0 +V α(ν)

0

∣∣∣ν〉 α(µ) 6= α(ν),

0 otherwise,
(21)

with α(µ) denoting the atom on which the basis
φµ is centered, T̂ denoting the kinetic energy op-
erator, and V α

0 being the KS potential of atom α

corresponding to its spatially constrained density.
The scaling of SCC-DFTB is straightforward

due to the pairwise form of the Hamiltonian. Ap-
plying SISPA scaling of Table I in the main tex-
t, the scaled SCC-DFTB Hamiltonian and overlap

matrix elements become

HSISPA
µν =HSISPA

0,µν

+
1
2

SSISPA
µν

QM

∑
β

∑
l′∈β

(
γ

SISPA
α(µ)l(µ)

β l′
+ γ

SISPA
α(ν)l(ν)

β l′

)
∆qSISPA

β l′

+
1
2

SSISPA
µν

MM

∑
A

(
γ

MM,SISPA
α(µ)A + γ

MM,SISPA
α(ν)A

)
qMM

A ,

(22)

where

HSISPA
0,µν = [λα(µ)λα(ν)(1−δα(µ)α(ν))+δα(µ)α(ν)]H0,µν ,

(23)
SSISPA

µν = [λα(µ)λα(ν)(1−δα(µ)α(ν))+δα(µ)α(ν)]Sµν ,
(24)

γ
SISPA
α∈QM,l
β∈QM,l′

= [λαλβ (1−δαβ )+δαβ ]γαl
β l′
, (25)

∆qSISPA
α∈QM,l =

occ

∑
i

ni ∑
µ∈α,l

∑
ν

cSISPA
µi cSISPA

ν i SSISPA
µν −q0,αl,

(26)
and

γ
MM,SISPA
α∈QM,A∈MM = λα(1−λA)(1−δαA)γ

MM
αA . (27)

The SISPA QM potential energy is

V QM,SISPA =
occ

∑
i

niε
SISPA
i +

1
2

QM

∑
αβ

(Erep,SISPA
αβ

+EvdW,SISPA
αβ

)

+
1
2

QM

∑
αβ

∑
l∈α

l′∈β

γ
SISPA
αl
β l′

∆qSISPA
αl ∆qSISPA

β l′

+
QM

∑
α

MM

∑
A

(
EvdW,SISPA

αA + γ
MM,SISPA
αA qMM

A ∑
l∈α

∆qSISPA
αl

)
,

(28)

where

Erep,SISPA
α,β∈QM = [λαλβ (1−δαβ )+δαβ ]E

rep
αβ

, (29)

EvdW,SISPA
α,β∈QM = [λαλβ (1−δαβ )+δαβ ]E

vdW
αβ

, (30)

EvdW,SISPA
α∈QM,A∈MM = λα(1−λA)(1−δαA)EvdW

α,A∈MM.
(31)

cSISPA and εSISPA in Eqs. (26) and (28) are ob-
tained by solving Eq. (19) with scaled Hamiltoni-
an and overlap matrices.
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3 The scaling of the COMB
and CHARMM potentials

COMB is a pairwise MM potential with variable
MM charges. The COMB potential energy is de-
composed into the following terms:

V MM =
MM

∑
A

{
Eself

A +
1
2

MM

∑
B6=A

[
EvdW

AB +ECoul
AB

+ERepul
AB +EBO

AB +
MM

∑
C 6=A,B

Eang
ABC

]}
(32)

where Eself is the self-energy, EvdW is the disper-
sion energy, ECoul is the Coulomb interaction ener-
gy, ERepul is the repulsive energy, EBO is the bond
order interaction energy, and Eang is the bond-
bending interaction energy.

The scaled COMB potential energy in SISPA is

V MM,SISPA =
MM

∑
A

[
(1−λA)Eself

A +

1
2
(1−λA)(1−λB)

MM

∑
B6=A

(
EvdW

AB +ECoul
AB

+ERepul
AB +EBO

AB +
MM

∑
C 6=A,B

Eang
ABC

)]
. (33)

The scaling COMB potential energy with the
modified scaling is

V MM,sc =
MM

∑
A

[
(1−λA)Eself

A +

1
2
(1−λA)(1−λB)

MM

∑
B 6=A

(
EvdW

AB +ECoul
AB

)
+(1−λAλB)

MM

∑
B 6=A

(
ERepul

AB +EBO
AB +

MM

∑
C 6=A,B

Eang
ABC

)]
.

(34)

The potential energy of the CHARMM force

field can be written as

V MM =
bonds

∑
(AB)

EBO
AB +

angles

∑
(ABC)

(
EUB

AC +Eang
ABC

)
+ ∑

(ABCD)

dihedralsEdihedral
ABCD +

impropers

∑
(ABCD)

E improper
ABCD

+
1
2 ∑

A,B6=A

(
EvdW

AB +ECoul
AB

)
, (35)

where EUB, Eang, Edihedral and E improper are the
Urey-Bradley, angle, dihedral, improper dihedral
potential energies. EBO, EUB, Eang, Edihedral and
E improper are non-zero only for pre-defined group
of atoms. I use the following equation as the s-
caled CHARMM potential energy in SISPA:

V MM,SISPA =
bonds

∑
(AB)

(1−λA)(1−λB)EBO
AB

+
angles

∑
(ABC)

[
(1−λA)(1−λC)EUB

AC +

(1−λA)(1−λB)(1−λC)E
ang
ABC

]
+

dihedrals

∑
(ABCD)

(1−λA)(1−λB)(1−λC)(1−λD)Edihedral
ABCD

+
impropers

∑
(ABCD)

(1−λA)(1−λB)(1−λC)(1−λD)E
improper
ABCD

+
1
2 ∑

A,B 6=A
(1−λA)(1−λB)

(
EvdW

AB +ECoul
AB

)
.

(36)

The scaled CHARMM potential energy with the
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modified scaling is

V MM,SISPA =
bonds

∑
(AB)

(1−λAλB)EBO
AB

+
angles

∑
(ABC)

[
(1−λAλC)EUB

AC +(1−λAλBλC)E
ang
ABC

]
+

dihedrals

∑
(ABCD)

(1−λAλBλCλD)Edihedral
ABCD

+
impropers

∑
(ABCD)

(1−λAλBλCλD)E
improper
ABCD

+
1
2 ∑

A,B6=A
(1−λA)(1−λB)

(
EvdW

AB +ECoul
AB

)
.

(37)

4 The z-vector method for the
DCP algorithm

I use SCC-DFTB as the QM method in the fol-
lowing derivations. There is no difficulty in simi-
lar derivations using other QM methods. I use the
superscript ‘pre’ and ‘sc’ to denote the pre-scaled
and scaled quantities in DCP, respectively.

I follow the common practice of using the pre-
scaled self-consistent KS orbitals as the new ba-
sis set.10–13 The Hamiltonian in this representa-
tion can be partitioned into occupied-occupied,
occupied-virtual, virtual-occupied, and virtual-
virtual blocks. The basis transformations for or-
bitals and matrices are carried out by

~upre
p =

[
C(0)

]−1
~cpre

p , (38)

and
M̃ =

[
C(0)

]T
MC(0), (39)

where
(
~cpre

p
)

µ
= cpre

µ p is the column vector of the

coefficients in Eq. (18), C(0) is the matrix formed
by the~cpre

p vectors, and the tilde in M̃ signifies that
the matrix is of the new basis set. With the new ba-
sis set, the Hamiltonian is a diagonal matrix of KS
orbital energies, and the overlap matrix becomes
identity.

The forces are obtained from the first order
changes in the QM potential energy V (1) corre-

sponding to perturbations in the the atomic posi-
tions. V (1) depends on the first order change in the
KS orbitals U(1), which is formed by the ~upre,(1)

p
vectors. I only need the virtual-occupied block of
U(1) due to the following relations:12

upre(1)
i j =−1

2
S̃pre(1)

i j , (40)

upre(1)
ab =−1

2
S̃pre(1)

ab , (41)

upre(1)
ia =−S̃pre(1)

ia −upre(1)
ai . (42)

To simplify the notations, I define the matrices
Oαl , Mpre

αl , Msc
αl , G̃′, Q̃, Q̃′, R̃pre

pq , R̃sc
pq as the follow-

ing:

[Oαl]µν
=

{
Spre

µν µ ∈ α, l,
0 µ 6∈ α, l,

(43)[
Mβ l′

]pre
µν

= (γ
pre
α(µ)l(µ)

β l′
+ γ

pre
α(ν)l(ν)

β l′
)Spre

µν , (44)

[
Mβ l′

]sc
µν

= (γsc
α(µ)l(µ)

β l′
+ γ

sc
α(ν)l(ν)

β l′
)Ssc

µν , (45)

G̃′ =
1
2

QM

∑
α

∑
l∈α

M̃sc
αl

(
1
2

qsc
αl−q0,αl

)
, (46)

Q̃=−1
4

occ

∑
i j

S̃pre,(1)
ji R̃( ji)+

1
2

QM

∑
α

∑
l∈α

{
M̃(1)

(αl)∆qpre(0)
αl

+ M̃(0)
(αl)

occ

∑
i

ni

[
~upre(0)

i

]T
· Õ(1)

(αl) ·~u
pre(0)
i

}
, (47)

Q̃′ =−1
8

occ

∑
i j

S̃pre,(1)
ji R̃( ji)+

1
2

QM

∑
α

∑
l∈α

{
M̃sc(1)

(αl)

×
(

1
2

qpre(0)
αl −q0,αl

)
+

1
2

M̃(0)
(αl)

occ

∑
i

ni

×
[
~upre(0)

i

]T
· Õ(1)

(αl) ·~u
pre(0)
i

}
, (48)

R̃pre
pq =

QM

∑
α

∑
l∈α

M̃pre(0)
αl

[
Õ(0)

α,i j + Õ(0)
α, ji

]
, (49)

R̃sc
pq =

QM

∑
α

∑
l∈α

M̃sc(0)
αl

[
Õ(0)

α,i j + Õ(0)
α, ji

]
, (50)
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The DCP QM potential energy is

V QM,sc =
occ

∑
i

ni
〈
ψ

pre
i |H

sc|ψpre
i
〉

+
1
2

QM

∑
αβ

∑
l∈α

l′∈β

γ
sc
αl
β l′

∆qpre
αl ∆qpre

β l′+
1
2

QM

∑
αβ

(Erep,sc
αβ

+EvdW,sc
αβ

)

+
QM

∑
α

MM

∑
A
(EvdW,sc

αA + γ
MM,sc
αA qMM

A ∑
l∈α

∆qpre
αl ), (51)

The first order change in the QM potential ener-
gy can be derived from the perturbation theory:

V QM,sc(1) =E (1)+
1
2

QM

∑
αβ

(Erep,sc(1)
αβ

+EvdW,sc(1)
αβ

)

+
occ

∑
i

virt

∑
a

upre(1)
ai Ỹai,

(52)

where E (1) is

E (1)=
occ

∑
i

ni

[
~upre(0)

i

]T
·
(

H̃sc(1)
0 + Q̃′+ G̃MM,sc(1)

)
·~upre(0)

i − 1
2

occ

∑
i j

niS̃
pre(1)
ji

(
H̃sc(0)

0,i j + H̃sc(0)
0, ji + G̃

′(0)
i j + G̃

′(0)
ji

)
+

1
2

QM

∑
αβ

∑
l∈α

l′∈β

γ
sc(1)
αl
β l′

q0,αlq0,β l′−
QM

∑
α

MM

∑
A

γ
MM,sc(1)
αA q0αqMM

A ,

(53)

and

Ỹai = ni

{
H̃sc(0)

0,ia + H̃sc(0)
0,ai + G̃

′(0)
ia + G̃

′(0)
ai

+G̃MM,sc(0)
ia +G̃MM,sc(0)

ai +
1
4

occ

∑
j

n j

[
~upre(0)

j

]T
·R̃sc

(ai) ·~u
pre(0)
j

}
,

(54)

with GMM,sc(1) being

GMM,sc(1)
µν =

1
2

Spre
µν

MM

∑
A

(
γ

MM,sc
α(µ)A + γ

MM,sc
α(ν)A

)
qMM

A .

(55)
Eq. (52) does not explicitly write out the terms

related to the transition forces. According to Eq.
(52), the first order change in the energy depend

on the first order change of the orbitals, which is
determined by the coupled-perturbed equations10

occ

∑
j

virt

∑
b

Γ̃(ai),(b j)u
pre(1)
b j = B̃ai (56)

where

Γ̃(ai),(b j)= δi jδab

(
ε

pre(0)
i − ε

pre(0)
a

)
− 1

2
n j
[
R̃b j
]pre

ai ,

(57)
and

B̃ai = H̃pre(1)
0,ai − ε

pre(0)
i S̃pre(1)

ai + Q̃ai + G̃MM,pre(1)
ai .

(58)
To get all the forces, it appears that one needs to

solve Eq. (56) 3Nat times, where Nat is the num-
ber of atoms. With the z-vector method, only one
set of coupled-perturbed-like equations need to be
solved. Treating Γ̃ as a super matrix and Ỹ , B̃ and
upre(1) as super vectors, Eq. (56) and (52) becomes

Γ̃ ·~u(1) = ~̃B, (59)

and

V QM,sc(1) =E (1)+
1
2

QM

∑
αβ

(Erep,sc(1)
αβ

+EvdW,sc(1)
αβ

)

+
[
~̃Y
]T
·~u(1).

(60)

Define the z-vector~̃z by[
Γ̃
]T ·~̃z = ~̃Y, (61)

Eq. (60) becomes

V QM,sc(1) =E (1)+
1
2

QM

∑
αβ

(Erep,sc(1)
αβ

+EvdW,sc(1)
αβ

)

+
[
~̃z
]T · ~̃B.

(62)

Eq. (62) determines the DCP QM forces. Instead
of solving for~u(1) for every atomic coordinate with
Eq. (59), one solves for ~̃z once with Eq. (61). S-
ince both Γ̃ and ~̃Y depend on zeroth order quan-
tities only, ~̃z is invariant to the perturbation, and
therefore Eq. (61) only need to be solved once in-
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stead of 3Nat times as for Eq. (59).
The derivatives of the pre-scaling factors affect

the force through the charge density and orbitals.
The pre-scaling force can be obtained by calcu-
lating the derivative of the potential energy with
respect to pre-scaling factors with the z-vector
method as well.

I find that the DFTB method is not the optimal
choice for DCP with the z-vector method, since
the Õαl matrices cannot be obtained directly with
quantities in the new basis set. They have to be cal-
culated by explicit basis set transformation, which
dominates the computational cost. These matrices
are needed due to the Mulliken-charge approxima-
tion of DFTB. This problem does not exist in DFT,
in which the z-vector method becomes highly ef-
fective.

5 QM charges of n-butanol and
n-butoxide anion

Table 1 shows the QM charges of n-butanol and
n-butoxide anion corresponding to the calculations
in Sec. 3.4 of the main text. MM charges (standard
values of the CHARMM force field) are also listed
for comparison.
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