ELECTRONIC SUPPLEMENTARY INFORMATION Electronic, optical and thermoelectric properties of boron-doped Nitrogenated Holey Graphene

Raphael M. Tromer,^{1,2,3,*} A. Freitas,¹ Isaac M. Felix,¹ Bohayra

Mortazavi,⁴ L. D. Machado,¹ S. Azevedo,⁵ and Luiz Felipe C. Pereira^{1, 6, †}

¹Departamento de Física, Universidade Federal do Rio Grande do Norte, Natal, 59078-970, Brazil
²Applied Physics Department, State University of Campinas, Campinas, SP, 13083-970, Brazil
³Center for Computational Engineering and Sciences, State University of Campinas, Campinas, SP, 13083-970, Brazil
⁴Chair of Computational Science and Simulation Technology, Department of Mathematics and Physics, Leibniz Universität Hannover, Appelstrasse 11, 30157 Hannover, Germany.
⁵Departamento de Física, CCEN, Universidade Federal da Paraíba, João Pessoa, 58051-970, Brazil.

⁶Departamento de Física, Universidade Federal de Pernambuco, Recife, 50670-901, Brazil

^{*} tromer@fisica.ufrn.br

 $^{^{\}dagger}$ pereira@fisica.ufrn.br

I. B-DOPED NHG STRUCTURES BEFORE OPTIMIZATION

FIG. 1. Unit cell of the boron doped NHG monolayers. The number of boron substitutions ranges from 1 to 6.

II. LATTICE THERMAL CONDUCTIVITY CALCULATION

In general, the calculation of the lattice thermal conductivity with molecular dynamics simulations are somewhat size-dependent. However, starting from small systems it is possible to obtain the intrinsic (size-independent) thermal conductivity of a material adjusting the following expression to the data points

$$\kappa(L) = \kappa \left(1 + \frac{\Lambda}{L}\right)^{-1},\tag{1}$$

where $\kappa(L)$ is the size-dependent conductivity and κ is the intrinsic quantity. Here, Λ presents an average phonon mean free path on the material. In the diffusive transport regime $L >> \Lambda$, and $\kappa(L) \approx \kappa$. The conductivities reported in the manuscript were obtained from the data in Fig. 2.

FIG. 2. Size dependence of the thermal conductivity obtained from molecular dynamics simulations.