Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2020

Electronic Supplementary Information

Dominance of Unique P $\cdots \pi$ Phosphorus Bonding with π donors: Evidence Using Matrix Isolation Infrared Spectroscopy and Computational Methodology

Swaroop Chandra, B. Suryaprasad, N. Ramanathan* and K. Sundararajan

Homi Bhabha National Institute, Materials Chemistry & Metal Fuel Cycle Group, Indira Gandhi Center for Atomic Research, Kalpakkam – 603102, Tamil Nadu, India

Corresponding author: nram@igcar.gov.in

Experimental results of PCl₃-C₂H₂ in N₂ matrix

In the experiments involving PCl₃ trapped within N₂ matrices, HCl consistently appeared as an impurity. The complete elimination of HCl was not successful, despite several efforts of purification. Consequently, heterodimers such as C_2H_2 – HCl and C_2H_4 –HCl were generated, along with heterotrimers such as HCl-PCl₃-C₂H₄. Computational traces of the potential energy surfaces (PESs) of C_2H_2 -HCl, C_2H_4 -HCl, HCl-PCl₃-C₂H₂ and HCl-PCl₃-C₂H₄ were performed at the MP2 level of theory with aug-cc-pVDZ as the basis set. Experimentally, the generation of HCl-PCl₃-C₂H₂ trimer was not observed, while HCl-PCl₃-C₂H₄ was observed. Serendipitously, the PES trace of trimer HCl-PCl₃-C₂H₄, revealed the lowest energy minimum to be stabilized by a concert of P... π and H-Cl...P, phosphorus bonding, with a cooperative contribution from C-H...Cl-P H-bonding, as revealed by the QTAIM plot in Figure S1.

Vibrational Assignments

Asymmetric C-H stretch region of C₂H₂

Figure S2 displays the asymmetric C-H stretch region of C₂H₂, trapped in N₂ matrix. Absorption feature at 3283.3 cm⁻¹ corresponds to the v₃ asymmetric C-H stretch mode in C₂H₂.¹ Computations predicted a red shift of -10.4 cm⁻¹ in the frequency associated with the asymmetric C-H stretch mode in C₂H₂-HCl heterodimer. In the IR spectrum, a feature at 3276.3 cm⁻¹ (shift: -7.0 cm⁻¹) varied in intensity which was in sync with the concentration variation of the HCl impurity. Together with the acceptable agreement with the computed shift, this feature has been assigned to the HCl-C₂H₂ heterodimer in N₂ matrix. The harmonic frequency calculations performed on PAc I and II predicted a red-shift of -5.9 and -6.7 cm⁻¹, respectively in the frequencies associated with the asymmetric C-H stretching modes of C₂H₂ within the heterodimers. A similar closeness in the shifts was observed in the harmonic frequency calculations at the CCSD level too (Table S2). In the IR spectrum, there appeared a feature at 3272.7 cm⁻¹, amounting to a red-shift of -10.6 cm⁻¹. The variation of the intensity against the concentration variations introduced in terms of the PCl₃ precursor, allow the cautious assignment of this feature to PAc I and/or PAc II. The absorption features at 3270.6 and 3265.3 cm⁻¹, exhibit a mutual dependence on their respective intensity variations, as seen in Figure S2. The PES trace of the $(C_2H_2)_2$ -PCl₃ heterotrimer predict a red-shift of -9.5 and -17.8 cm⁻¹ in the frequency associated with the C-H stretch mode in the proton acceptor C_2H_2 and proton donor C₂H₂, respectively. This is in acceptable agreement with the observed shifts of -12.7 and -18.0 cm⁻¹, for the absorption features at 3270.6 and 3265.3 cm⁻¹. These have been assigned to the 2:1 heterotrimer of C₂H₂:PCl₃. It is important to note the absence of the features at 3279.2 and 3257.0 cm⁻¹, corresponding to the asymmetric C-H stretch in C_2H_2 homodimer.1

Asymmetric C-H stretch region of C₂H₄

The asymmetric C-H stretch region of C_2H_4 trapped in N₂ matrix (Figure S3 Left), shows an absorption feature at 2986.8 cm⁻¹ which exhibits a clear dependence on the concentration of the PCl₃ precursor. With respect to the absorption feature corresponding to the v₁₁ asymmetric C-H stretch mode of C₂H₄ at 2989.7 cm⁻¹,² the aforementioned feature is red-shifted by -2.9 cm⁻¹. This is in excellent agreement with the predicted shift of -2.5 cm⁻¹ at MP2/aug-cc-pVDZ. Thus, the new absorption feature at 2986.8 cm⁻¹ has been assigned to PEth I in N₂ matrix.

C-H bend region of C₂H₄

As a consequence of annealing, two absorption features appear at 958.7 and 951.2 cm⁻¹ in the C-H bending region of C_2H_4 (Figure S3 Right) is blue shifted by 11.8 and 4.3 cm⁻¹ from the monomer absorption at 946.9 cm⁻¹.² The intensity of both the features varies with the concentration variations of the PCl₃ precursor. The harmonic frequency calculations of PEth I, predicted a blue shift of 5.0 cm⁻¹ with respect to the v_7 mode of C_2H_4 , which is in acceptable agreement with the observed shift of 4.3 cm⁻¹. The computed shift associated with the C-H bending mode in the lowest energy minimum of C_2H_4 in HCl-C₂H₄-PCl₃ heterodimer is blue shifted by 19.8 cm⁻¹. This is quite off from the observed shift of 11.8 cm⁻¹. However, the dependence of the intensity on the concentration of the PCl₃ precursor allows the cautious assignment of this feature to the HCl-C₂H₄-PCl₃ heterotrimer.

Asymmetric P-Cl Stretch region

The v_3 mode of PCl₃(Cl³⁵:Cl³⁷::3:0) monomer absorption was observed at 496.6 cm^{-1,3} Two new features were observed at 495.1 cm⁻¹ and 490.1 cm⁻¹(Figure S4) pick up in intensity as a consequence of annealing, and show concentration dependence on C₂H₄. The harmonic frequency calculations of PEth I predict a feature at 484.3 cm⁻¹, red shifted by -7.5 cm⁻¹, with respect to the v_3 mode at 491.8 cm⁻¹. The computed red shift of -7.5 cm⁻¹ agrees well with the experimental shift of -6.5 cm⁻¹. The frequency calculations on the lowest energy minimum on the PES of HCl-PCl₃-C₂H₄ heterotrimer revealed a red-shift of -1.2 cm⁻¹, associated with the asymmetric P-Cl stretch. This is in excellent agreement with the experimental red shift of -1.5 cm⁻¹, associated with the feature observed at 495.1 cm⁻¹, which proves the generation of the heterotrimer.

Table S1 presents a comprehensive list of all the assignments. Table S2 presents a comparison of the computed shifts at CCSD, MP2, B3LYP and B2PLYP levels of theory all with aug-cc-pVDZ basis sets, from the harmonic frequency calculations performed on all the minima on the PESs of PAc and PEth.

Justification for improbability in generation of 1:2::C₂H₂:PCl₃ heterotrimers within matrices

The high concentration of PCl₃ raises the possibility of formation of $1:2::C_2H_2:PCl_3$ trimers. A computational trace of the respective PES at MP2/aug-cc-pVDZ level, revealed three minima (Figure S6). With respect to the global minimum, the 1st local has an excess energy of 0.90 kcal mol⁻¹ while the 2nd local has energy of 1.24 kcal mol⁻¹. The shift in the frequency

associated with the global minimum is predicted to be -13.2 cm^{-1} . Compared to this, the predicted shifts of -9.8 and -17.8 cm⁻¹ for the 2:1::C₂H₂:PCl₃ heterotrimer are much more consistent with the observed shifts of -10.1 and -16.7 cm⁻¹. Also, the relative intensities of two features (in both N₂ and Ar matrices) vary synchronously such that the ratio of their intensities is always the same. If it were the 1:2::C₂H₂:PCl₃ heterotrimer the presence of a single characteristic C-H stretch feature would conform its formation, unlike the twin features observed in the experiments, which confirms the generation of 2:1::C₂H₂:PCl₃ heterotrimers. Probing the P-Cl stretch region for this discrimination is not an option owing to the low computed shifts predicted for the geometries of both the scenarios: 1:2 or 2:1 C₂H₂:PCl₃ heterotrimers, hindering their discernment due to the overcrowding of the P-Cl region by the isotopic signatures of PCl³⁵Cl₂³⁷ and PCl₂³⁵Cl³⁷.

Figure S1. Infrared spectra of asymmetric C-H stretch region of C_2H_2 correspond to the codeposition experiments of PCl₃ and C_2H_2 in N₂ matrix. All spectra were recorded at 12 K after annealing the matrix to 32 K.

Figure S2. FT-IR spectra of C-H bending region. Grid A and Grid B correspond to the experiments of PCl_3 with C_2H_2 and C_2H_4 in N_2 matrix. All spectra were recorded at 12 K after annealing the matrix to 32 K.

Figure S3. Infrared spectra of asymmetric P-Cl stretching region of PCl_3 with C_2H_2 in N_2 matrix. All spectra were recorded at 12 K after annealing the matrix to 32 K.

Figure S4. PCl₃ – C₂H₄ – H₂O heterotrimer computed at MP2/aug-cc-pVDZ level of theory

Figure S5. Optimized geometries of 2:1 C_2H_2 :PCl₃ heterotrimers computed at MP2/aug-cc-pVDZ level of theory and their respective relative ZPE energies (kcal mol⁻¹)

Figure S6. Optimized geometries of minima on the PES of 1:2::C₂H₂:PCl₃ heterotrimers

Figure S7. PCl₃-C₂H₄-HCl heterotrimer computed at MP2/aug-cc-pVDZ level of theory

Table S1. Computed and experimental vibrational wavenumbers (in N₂ matrix) and shifts of different vibrational modes of PAc I, PAc II and PEth I heterodimers computed at MP2 level of theory with aug-cc-pVDZ basis set.

Computed Wavenu	mber(cm ⁻¹)	Experimental Wa	venumber(cm ⁻¹)	Mode Assignment		
ν	Δν	ν	Δν	Mode Assignment		
		P-Cl Stretc	h Region			
491.8 (146.8)		496.6		v ₃ of PCl ₃ monomer		
486.5 (172.8)	-5.3			Asymm P-Cl stretch in PAc I		
487.0 (125.5)	-4.8			Asymm P-Cl stretch in PAc II		
490.6 (136.1)	-1.2	495.1	-1.5	P-Cl stretch HCl-PCl ₃ -C ₂ H ₂ ^a		
484.3 (181.1)	-7.5	490.1	-6.5	Asymm P-Cl stretch in PEth I		
		C-H Stretch re	gion in C ₂ H ₂			
3431.7 (93.3)		3283.3		v_3 of C_2H_2 monomer		
3421.3 (111.9)	-10.4	3276.3	-7.0	C ₂ H ₂ -HCl		
3425.8 (90.2)	-5.9	3272.7	-10.6	Asymm C-H stretch PAc I		
3425.0 (93.9)	-6.7	3272.7	-10.6	Asymm C-H stretch PAc II		
3422.2 (95.5)	-9.5	3270.6	-12.7	Proton acceptor $(C_2H_2)_2$ - PCl_3^a		
3413.9 (95.5)	-17.8	3265.3	-18.0	Proton donor $(C_2H_2)_2$ - PCl_3^a		
		C-H Stretch re	gion in C ₂ H ₄			
3175.7 (11.4)		2989.7		$v_{11} C_2 H_4$		
3173.2 (4.9)	-2.5	2986.8	-2.9	Asymm C-H stretch PEth I		
C-H Bend region in C ₂ H ₄						
979.2 (95.0)		946.9		v_7 of C_2H_4 monomer		
984.2 (119.8)	+5.0	951.2	+4.3	C-H bend in PEth I		
999.0 (114.0)	+19.8	958.7	+11.8	C-H bend in C ₂ H ₄ -HCl		

^aAsymmetric stretch

CCSD/aug-cc-pVDZ	Computed Wavenumber (Shift) cm ⁻¹	Intensity (km mol ⁻¹)					
PCl ₃							
Asymm.Stretch (v ₃)	493.0	136.8					
C ₂ H ₂							
Asymm.Stretch (v ₃)	3404.7	80.1					
Bending ^a (v ₅)	713.4	93.4					
	C_2H_4						
Bending ^a (v ₇)	975.9	91.1					
	PAc - I						
Asym P-Cl Stretch	488.8(-4.2)	155.8					
Asym C-H Stretch	3400.8(-3.9)	77.0					
C-H Bend ^a	709.3(-4.1)	99.1					
	PAc - II						
Asym P-Cl Stretch	489.6(-3.4)	119.3					
Asym C-H Stretch	3400.2(-4.5)	79.7					
C-H Bend ^a	711.8(-1.6)	77.9					
	PAc - III						
Asym P-Cl Stretch	485.6(-7.5)	113.0					
Asym C-H Stretch	3408.9(4.2)	125.1					
C-H Bend ^a	743.6(30.2)	75.2					
	PEth - I						
Asym P-Cl Stretch	488.2(-4.8)	132.8					
C-H Bend	982.7(+6.8)	114.2					
PEth – II							
Asym P-Cl Stretch	490.3(-2.7)	122.1					
C-H Bend	979.6(+3.7)	67.6					
	PEth – III						
Asym P-Cl Stretch	491.8(-1.2)	153.8					
C-H Bend	975.7(-0.2)	79.8					

Table S2. Computed Shifts of PCl₃ with C₂H₂ and C₂H₄ heterodimers at CCSD level of theory

^aOut of plane bending

MP2/aug-cc-pVDZ	MP2/aug-cc-pVDZ Computed Wavenumber (Shift)					
	cm ⁻¹	• 、				
	PCl ₃					
Asymm.Stretch (v ₃)	491.8	146.8				
	C_2H_2					
Asymm.Stretch (v ₃)	3431.7	93.3				
Bending ^a (v ₅)	703.0	94.6				
	C_2H_4					
Bending ^a (v ₇)	979.2	95.0				
	PAc - III					
Asym P-Cl Stretch	494.5(+2.4)	112.9				
Asym C-H Stretch	149.2					
C-H Bend ^a	730.6(+27.6)	77.7				
	PEth – II					
Asym P-Cl Stretch	488.8(-3.0)	130.8				
C-H Bend	980.8(+1.6)	70.1				
PEth – III						
Asym P-Cl Stretch	490.5(-1.3)	164.9				
C-H Bend	977.6(-1.6)	82.6				

Table S3. Computed Shifts of PCl_3 with C_2H_2 and C_2H_4 heterodimers at MP2 level of theory

^aOut of plane bending

B3LYP-GD3/aug-cc-pVDZ	YP-GD3/aug-cc-pVDZ Computed Wavenumber (Shift)				
	cm ⁻¹	(km mol ⁻¹)			
	PCl ₃				
Asymm.Stretch (v ₃)	464.4	146.3			
	C ₂ H ₂				
Asymm.Stretch (v ₃)	3416.0	95.4			
Bending ^b (v ₅)	727.4	100.5			
	C_2H_4				
Bending ^a (v ₇)	982.4	99.5			
	PAc - I				
Asym P-Cl Stretch	458.7(-5.7)	170.9			
Asym C-H Stretch	3413.6(-2.4)	89.7			
C-H Bend ^b	726.7(-0.7)	113.4			
	PAc - II				
Asym P-Cl Stretch	459.2(-5.2)	127.7			
Asym C-H Stretch	3412.9(-3.1)	93.2			
C-H Bend ^b	724.7(-2.7)	81.7			
	PAc - III				
Asym P-Cl Stretch	466.9(+2.5)	129.7			
Asym C-H Stretch	3415.2(-0.8)	148.4			
C-H Bend ^b	737.2(+9.8)	86.8			
	PEth - I				
Asym P-Cl Stretch	458.3(-6.6)	173.6			
C-H Bend	994.7(+12.3)	95.5			
PEth – II					
Asym P-Cl Stretch	461.8(-3.7)	130.4			
C-H Bend	986.8(+4.4)	64.1			
PEth – III					
Asym P-Cl Stretch	464.4(-1.1)	165.3			
C-H Bend	982.2(-0.2)	85.8			

^aThe geometry of PAc IV could not be optimized at the B3LYP-GD3 level of theory. Hence, the computed shifts of the respective heterodimer have been omitted altogether. ^bOut of plane bending

B2PLYP/aug-cc-pVDZ	Computed Wavenumber (Shift)	Intensity					
	cm ⁻¹	(km mol ⁻¹)					
PCl ₃							
Asymm.Stretch (v ₃)	477.6	145.9					
C ₂ H ₂							
Asymm.Stretch (v ₃)	3431.6	97.2					
Bending ^a (v ₅)	722.2	102.3					
	C_2H_4						
Bending ^a (v ₇)	985.2	98.1					
	PAc - I						
Asym P-Cl Stretch	470.9(-6.7)	171.0					
Asym C-H Stretch	3428.5(-3.1)	89.6					
C-H Bend ^a	718.4(-3.8)	111.4					
PAc - II							
Asym P-Cl Stretch	472.1(-5.5)	126.88					
Asym C-H Stretch	3427.7(-3.9)	93.1					
C-H Bend ^a	722.1(-0.1)	80.5					
	PAc - III						
Asym P-Cl Stretch	479.0(+1.1)	129.4					
Asym C-H Stretch	3431.6(0)	147.0					
C-H Bend ^a	734.1(+11.9)	83.3					
	PEth - I						
Asym P-Cl Stretch	471.3(-6.7)	168.5					
C-H Bend	993.9(+8.7)	121.0					
PEth – II							
Asym P-Cl Stretch	474.6(-3.4)	130.1					
C-H Bend	989.0(+3.8)	69.8					
	PEth – III						
Asym P-Cl Stretch	477.1(-0.9)	164.8					
C-H Bend	984.2(-1.0)	84.0					

 Table S5: Computed Shifts of minima at B2PLYP level of theory

^aOut of plane bending

PAc I					
Perturbation Energies			Occupancies		
Donor	Acceptor	E ₂ ^a	Donor	Acceptor	
σP1Cl4	π*(2)C5C6	0.05	1.99060(1.99092)	0.00284(0.00903)	
n(2)Cl3	σ*C5C6	0.07	1.96659(1.96762)	0.00065(0.00000)	
n(2)Cl3	π*C5C6	0.05	1.96659(1.96762)	0.00938(0.00000)	
n(2)Cl3	π*(2)C5C6	0.39	1.96659(1.96762)	0.00284(0.00903)	
n(3)Cl3	σ*C5C6	0.06	1.95670(1.95567)	0.00065(0.00000)	
n(3)Cl3	π*(2)C5C6	0.14	1.95670(1.95567)	0.00284(0.00903)	
n(2)Cl4	σ*C5C6	0.07	1.96661(1.96765)	0.00065(0.00000)	
n(2)Cl4	π*C5C6	0.06	1.96661(1.96765)	0.00938(0.00000)	
n(2)Cl4	π*(2)C5C6	0.41	1.96661(1.96765)	0.00284(0.00903)	
n(3)Cl4	σ*C5C6	0.07	1.95677(1.95571)	0.00065(0.00000)	
n(3)Cl4	π*(2)C5C6	0.15	1.95677(1.95571)	0.00284(0.00903)	
π(2)C5C6	σ*P1Cl2	2.54	1.99005(1.99230)	0.07112(0.06818)	
π(2)C5C6	σ*P1Cl3	0.05	1.99005(1.99230)	0.06894(0.06816)	
π(2)C5C6	σ*P1Cl4	0.05	1.99005(1.99230)	0.06902(0.06818)	

Table S6: Relevant intermolecular charge transfer among PCl₃ and C₂H₂ in PAc I dimer

^ain kcal mol⁻¹

Table S7: Relevant intermolecular ch	narge transfer among	PCl_3 and C_2H_2	in PAc II dimer
--------------------------------------	----------------------	----------------------	-----------------

PAc II						
Perturbation Energies			Occupancies			
Donor	Acceptor	E ₂ ^a	Donor	Acceptor		
σP1Cl3	π*(2)C5C6	0.07	1.99037(1.99092)	0.00284(0.00903)		
σP1Cl4	π*(2)C5C6	0.07	1.99037(1.99092)	0.00284(0.00903)		
nP1	π*(2)C5C6	0.07	1.99551(1.99762)	0.00284(0.00903)		
n(2)Cl3	σ*C5C6	0.07	1.96744(1.96762)	0.00075(0.00000)		
n(2)Cl3	π*(2)C5C6	0.15	1.96744(1.96762)	0.00284(0.00903)		
n(3)Cl3	σ*C5C6	0.08	1.95631(1.95567)	0.00075(0.00000)		
n(3)Cl3	π*(2)C5C6	0.26	1.95631(1.95567)	0.00284(0.00903)		
n(2)Cl4	σ*C5C6	0.07	1.96744(1.96765)	0.00075(0.00000)		
n(2)Cl4	π*(2)C5C6	0.15	1.96744(1.96765)	0.00284(0.00903)		
n(3)Cl4	σ*C5C6	0.08	1.95631(1.95571)	0.00075(0.00000)		
n(3)Cl4	π*(2)C5C6	0.26	1.95631(1.95571)	0.00284(0.00903)		
π(2)C5C6	σ*P1Cl2	2.63	1.98991(1.99230)	0.07192(0.06818)		
π(2)C5C6	σ*P1Cl3	0.05	1.98991(1.99230)	0.06882(0.06816)		
π(2)C5C6	σ*P1Cl4	0.05	1.98991(1.99230)	0.06882(0.06818)		

^ain kcal mol⁻¹

PEth I						
Perturbation Energies			Occup	Occupancies		
Donor	onor Acceptor E ₂ ^a		Donor	Acceptor		
σP2Cl4	π*C5C6	0.11	1.98995(1.99085)	0.00474(0.00246)		
P2	π*C5C6	0.41	1.99434(1.99753)	0.00474(0.00246)		
n2Cl3	σ*C5H7	0.14	1.96778(1.96728)	0.00856(0.00820)		
n2Cl3	σ*C5H8	0.08	1.96778(1.96728)	0.00838(0.00820)		
n3Cl3	σ*C6H9	0.12	1.95718(1.95535)	0.0083(0.00820)		
n3Cl3	σ*C6H10	0.05	1.95718(1.95535)	0.0082(0.00820)		
n2Cl4	π*C5C6	0.56	1.96624(1.96732)	0.00474(0.00246)		
n3Cl4	π*C5C6	0.63	1.9562(1.95538)	0.00474(0.00246)		
πC5C6	σ*Cl1P2	3.88	1.98351(1.99234)	0.07515(0.06900)		
πC5C6	σ*P2Cl3	0.1	1.98351(1.99234)	0.06949(0.06894)		
πC5C6	σ*P2Cl4	0.05	1.98351(1.99234)	0.06856(0.06894)		

Table S8: Relevant intermolecular charge transfer among PCl_3 and C_2H_4 in PEth I dimer

^ain kcal mol⁻¹

Table S9: Relevant intermolecular charge transfer among PCl₃ and C₆H₆ in PB I dimer

C6H6 - PCl3						
Perturbation Energies			Occupancies			
Donor	Acceptor	E ₂ ^a	Donor	Acceptor		
πС1С3	σ*P13Cl14	0.42	1.65434(1.66399)	0.07805(0.06893)		
πС1С3	σ*P13Cl15	3.6	1.65434(1.66399)	0.08025(0.06893)		
πС5С7	σ*P13Cl14	1.38	1.65549(1.66399)	0.07805(0.06893)		
πС5С7	σ*P13Cl15	0.56	1.65549(1.66399)	0.08025(0.06893)		
πС5С7	σ*P13Cl16	0.2	1.65549(1.66399)	0.07805(0.06893)		
πС9С11	σ*P13Cl14	0.09	1.65550(1.66399)	0.07805(0.06893)		
πС9С11	σ*P13Cl16	1.28	1.65550(1.66399)	0.07805(0.06893)		
π*C1C3	σ*P13Cl15	2.53	0.33479(0.33235)	0.08025(0.06893)		
π*C5C7	σ*P13Cl15	3.23	0.32869(0.33235)	0.08025(0.06893)		
π*C9C11	σ*P13Cl15	0.31	0.32823(0.33235)	0.08025(0.06893)		
σP13Cl16	π*C5C7	0.05	1.99043(1.99085)	0.32869(0.33235)		
n2Cl14	π*C1C3	0.19		0.33479(0.33235)		
n2Cl16	π*C5C7	0.29		0.32869(0.33235)		
n3Cl16	π*C1C3	0.06		0.33479(0.33235)		

^ain kcal mol⁻¹

Hotorodimor	A	ttractive			Repulsive
fieter ounner	Electrostatic	Orbital	Dispersion	Steric	Pauli Repulsion
PAc I	-4.34	-2.14	-2.87	2.8	7.14
PAc II	-7.2	-2.02	-2.82	1.75	8.96
PAc III	-0.29	-1.43	-2.57	2.76	3.06
PEth I	-5.7	-3.15	-3.68	4.4	10.09
PEth II	-1.69	-0.92	-3.69	2.72	4.41
PEth III	-0.44	-0.35	-1.25	0.81	1.25
PB I	-10.46	-6.2	-5.89	9.26	19.72
PB II	-5.04	-1.75	-7.01	5.72	10.76
PB IV	-2.21	-1.35	-4.7	3.92	6.13

Table S10: Results from the Fragment Analysis of selected minima on the PESs of the heterodimers using ADF-2016 package. All values are expressed in kcal mol⁻¹

References:

- 1 K. Sundararajan and K. S. Viswanathan, J. Mol. Struct., 2006, 798, 109–116.
- 2 H. Frei, J. Chem. Phys., 1983, 79, 748–758.
- 3 P. R. Joshi, N. Ramanathan, K. Sundararajan and K. Sankaran, J. Phys. Chem. A, 2015, **119**, 3440–3451.