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1 Supporting Information
In addition to the information presented on the following pages,
the spreadsheets (in open-document format) used to conduct all
calculations starting from the raw data (simulation averages) to
the final boiling points are available upon request from the corre-
sponding author.

Table 1 Settings used for the DFT-MD calculations in the thermody-
namic integration and perturbation theory in the form (TDI→TPT). The
reduced timestep used in the simulations near the non-interaction limit
is given in parenthesis.

element cut-off k-grid timestep [fs]
Xe (165 K, 200 K) 200→ 400 Γ→ 23 8 (4)

K (923, 1023, 1123 K) 200→ 400 Γ→ 33 8 (1)
K (1000 K) 250→ 500 Γ→ 23 4 (1)

Na (1000 K) 250→ 500 Γ→ 23 4 (1)
B (4000 K) 350→ 600 23→ 33 1 (0.25)
Al (2800 K) 400→ 600 Γ→ 23 2 (1)

Ca (1800 K, 2100 K) 200→ 400 Γ→ 23 4 (1)
Sr (1800 K) 200→ 400 Γ→ 23 4 (1, 0.5)
Ba (2000 K) 200→ 400 Γ→ 23 5 (0.5)

Cu (2700 K, 3000 K) 350→ 600 Γ→ 23 2 (1)
Mn (2400 K) 300→ 600 Γ→ 23 2 (1)
Mn (3200 K) 300→ 600 Γ→ 23 1.5 (0.3)

sr/so Hg (700 K) 250→ 500 23→ 33 12 (3)

1.1 Calculation of the Gibbs Energy of the Liquid
The Gibbs energy of the liquid is calculated through TDI from a
non-interacting reference (ideal gas). For this purpose the dif-
ference of the internal energies is integrated along the coupling
parameter λ

∆G0−1 =
∫ 1

0
dλ 〈U1(R)−U0(R)〉λ , (1)

which relates the liquid with U1 to the ideal gas with U0 at the
same T and V by scaling the forces, and added to the Gibbs
energy of the ideal gas at the liquid equibrium volume (eqs. 5
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and 6). Since the kinetic energy part of U1 and U0 is identi-
cal it cancels, and the potential part vanishes at zero interaction
stength (u0), the value of the integrand is the average internal
potential energy calculated at full interaction strength 〈Upot

1 (R)〉
for configurations R generated with reduced interaction strength
(at the respective λ). This integral is evaluated using numerical
quadrature in the form of a n-point Gauss-Lobatto rule, in princi-
ple requiring one NVT simulation for each λ . Although most of
these simulations are straightforward, the ones very close to the
ideal-gas limit (λ � 0.01 or < 1% of the DFT forces) are tedious,
whereas the simulation for the end point λ = 0 is not possible
with a PAW+DFT methodology. This is because close-encounters
between the (almost) non-interacting atoms lead to singularity in
the energy resulting in numerical instabilities in errors in the sim-
ulations, partly resulting from overlapping core-electrons. An ap-
proach to circumvent these issues was devised and implemented
by Kresse and coworkers and will be used here with slight modi-
fications.1

The approach is based on substituting λ in eq. (1) with λ (x) =
( x+1

2 )1/(1−κ), which yields

∆G =
1

2(1−κ)

∫ 1

−1
f (λ (x))λ (x)κ dx . (2)

This introduces an explicit dependency on λ in the integrand,
which not only dampens the impact of the technically challenging
calculations near the non-interacting limit (cf. effective weights in
Fig. 1), but also completely eliminates the point for λ = 0. This is
because the substitution introduces a parameter κ, which fulfils
another role: It guides the mapping of the quadrature points be-
tween the domains. While a value close to 0 retains the original
(equidistant) spacing of the Gauss-Lobatto quadrature, choosing
κ close to 1 increases the density of quadrature points in the λ do-
main in the region close to λ = 0, where the slope of f (λ ) is the
largest (cf. Fig. 1). While Kresse and coworkers suggest κ > 0.8,
we demonstrate here that at least for the calculation of NBPs,
much smaller values suffice. This dramatically reduces the com-
putational effort as it allows to avoid the technically challenging
simulations near the non-interacting limit almost entirely.

Since it is nevertheless prohibitively expensive to carry out the
TDI at a converged level of theory, it is instead combined with
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Fig. 1 Effective weight plotted against the λ s (logarithmic scale) at which
simulations have to be conducted for a 6-point Gauss-Lobatto rule for
several different choices of κ. The interaction-strength for the most “non-
interacting” simulation (min) is given in the legend in %. For reference,
the evolution of the value of the integrand taken from B at 4000 K with
PBE-D3 is shown in blue on the secondary axis. The effective weight
is (wiλ

κ )/(2(1−κ)) where wi is the weight from the respective Gauss-
Lobatto rule.

thermodynamic perturbation theory (TPT)

∆G1−2 =−
1
β

ln〈e−β [U2(R)−U1(R)]〉1 , (3)

where the index after the angle bracket indicates that the differ-
ence ∆U1−2 is evaluated for configurations generated by H1. Thus,
by exploiting the linear shift of a refined Hamiltonian (e.g. in-
creased cut-off, k-points or even another functional), TPT can of-
ten provide a very good estimate for the respective Gibbs-energy
difference from as few as 5-20 single-point calculations. Instead
of the exact equation, we use the second-order cumulant expan-
sion

∆G1−2 ≈ 〈∆U〉1−
β

2
〈(∆U−〈∆U〉)2〉1 , (4)

which is sufficiently accurate since already the second-order term
is � 1 meV/atom in all cases, and can thus be neglected. Us-
ing TPT, all final results are converged to within ≈ 2 meV/atom,
which translates into a error in the NBP of about 2 K.

1.2 Calculation of the Gibbs Energy of the Gas Phase

The Gibbs energy of the gas phase is calculated for the non-
interacting (ideal) gas at its equilibrium volume and ambient
pressure. For a given atomic degeneracy Θ, volume V , temper-
ature T , particle number N and mass m this is

Gid = F id + pV =−kBT ln(Z(Θ,T,V,N))+ pV , with (5)

Z(T,V,N) =
(ΘV )N

Λ3NN!
and Λ = h

√
β

2πm
. (6)

For the gas phase, this equation is solved using the Stirling ap-
proximation, which is sufficiently accurate since we are consider-

ing an arbitrary number of particles. The same equation is also
used to calculate the Gibbs energy of the non-interacting refer-
ence for the liquid (at the equilibrium volume of the liquid). Here,
however, the Stirling approximation is no longer suitable since
the number of particles is finite (61 or 64), and the pV term is
negligible. Moreover, since – in contrast to the real atoms in the
gas phase – the non-interacting reference for the liquid consists
of hypothetical point-masses, they are not degenerate.

To validate the accuracy of the non-interacting model, we eval-
uate the first virial (two-body) correction for each of the exam-
ples assuming a Lennard-Jones (12,6) potential with the param-
eters derived from first-principles calculations for the respective
dimers. This leads to the following integral

Gg
LJ = Gg

id−
2πN2

V β

∫ [
r2e
−4εβ

[
( σ

r )
12−( σ

r )
6
]
−1
]

dr (7)

which can be evaluated as described in ref. 2. This provides gen-
erally very small corrections (≤ 1.0 meV/atom), which in turn
have a negligible impact on the calculated boiling points (≤ 1 K).

2 Determination of Equilibrium Volumes

To calculate the equilibrium volume, the 61 or 64-atom super-
cells are simulated with the default settings (cf. Tab. 1) at sev-
eral slightly different volumes until the statistical average of the
pressure is converged to within 0.3 kBar. For about 5-20 equidis-
tant snapshots from the trajectory, single-point calculations are
conducted with the converged settings to obtain a correction for
the influence of Pulay stress, a finer k-point grid, and increased
numerical precision (as well as spin-orbit coupling in case of Ba
and Hg). The corrected pressures at each point are fitted with
a second-order polynomial and interpolated to the x-intersection
(p = 0, note that using p=0.001 kBar consistent with ambient
pressure would provide virtually identical volumes). Final vol-
umes are confirmed during the TDI, where the simulation with
λ = 1 and subsequent TPT provides the residual pressures given
in Tab. 2, along with the calculated atomic volumes and corre-
sponding densities.

2.1 Derivation of the Scaling-Relation of the Gibbs Energy

The following derivations built on those presented to ref. 3, which
demonstrates that for any atomic system in the classical Born-
Oppenheimer picture, a scaling of the interatomic potential φ

with a factor λ , phase-transition temperatures scale with the same
factor. Although ref. 3 explicitly includes the boiling points, we
will show in the following that the simple transition-temperature
scaling is incorrect for the BP. Instead, the corrected BP, or in
other words the BP for a scaled interaction potential λφ , has to
be determined from the intersect of corrected (scaled) Gibbs en-
ergy for the liquid with the (unaffected) Gibbs energy of the gas.
For this purpose, we go beyond the derivations presented in ref. 3
and provide an analytical expression for the absolute Gibbs ener-
gies of the solid and liquid phase as a function of a linear scaling
of the potential.

Let us begin with the description of the Gibbs energy for the
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Table 2 Calculated equilibrium volumes (in Å3/atom), corresponding den-
sities ρ (in g/cm3), and residual pressures (in kBar) for all studied el-
ements. Volumes of Al, Cu, B, and Cn are calculated with 23k-point
grid in the simulations, all others employ the Γ-point approximation and
include the effect of more k-points perturbatively.

element/DFA/Tsim V/atom ρ residual p
Xe/PBE-D3/165 K 79.8 2.73 0.1
Xe/PBE-D3/200 K 85.8 2.54 0.1
Xe/revPBE-D3/165 K 79.8 2.73 −0.1
K/PBE-D3/1000 K 90.42 0.718 0.0
K/PBEsol/1000 K 93.22 0.696 0.3
K/PBE/1000 K 101.9 0.637 0.1
B/PBE-D3/4000 K 8.820 2.04 −0.2
Al/PBE/2800 K 23.62 1.90 0.1
Na/PBEsol/1000 K 46.24 0.825 0.2
Ca/PBE/1800 K 52.51 1.27 −0.5
Ca/PBED3/1800 K 47.63 1.40 0.2
Ca/PBEsol/1800 K 49.22 1.35 −0.2
Sr/PBE/1570 K 66.92 2.17 0.0
Sr/PBED3/1800 K 64.00 2.27 −0.2
Sr/PBEsol/1800 K 65.55 2.22 −0.7
Ba/PBE/2000 K 81.25 2.81 0.0
Ba/PBED3/2000 K 73.40 3.11 0.1
Mn/PBE/3200 K 12.75 7.16 0.5
Mn/RPBE/2400 K 12.49 7.30 −0.4
Mn/SCAN/2400 K 11.58 7.89 −1.2
Cu/PBE/2400 K 12.49 7.30 −0.4
Hg/soPBEsol/700 K 25.86 12.9 −0.1

solid and liquid phase. In ref. 3 it is shown that

U(λT,λφ) = λU(T,φ) . (8)

However, no such relation was derived for the absolute entropy,
but only for the relative melting entropy ∆Ss−l . While this is suf-
ficient to derive the transition-temperature scaling for the MP, it
was insufficient to calculate the change in the absolute Gibbs en-
ergy upon scaling the potential.

To derive an analytical relation also for S, let us consider a sim-
ple solid and liquid. At sufficient high temperatures, such that
classical mechanics is applicable, it follows from the equipartition
theorem that the total mean energy, the sum of kinetic and poten-
tial energy, is proportional to the temperature.4 Hence, the term
p2 in the kinetic part to the general expression for the entropy
scales linearly with T ,

S(T,φ) =
U
T
+ kB lnZ (9)

=
U
T
+ kB ln

(∫
e−φ(r)/kBT dr+

∫
e−p2/2mkBT d p

)
(10)

S(λT,λφ) =
λU
λT

+ kB ln
(∫

e−λφ(r)/kBλT dr+
∫

e−λ p2/2mkBλT d p
)
,

(11)

such that as evident from the last line, the λ s cancel out. This
is because the accessible configuration space remains exactly the
same when potential depth φ and available kinetic energy T are
multiplied by the same factor λ . This concludes that for both

the solid and the liquid phases the entropy is unaffected by the
scaling and thus

S(λT,λφ) = S(T,φ) . (12)

Accordingly, the respective Gibbs energy (assuming pV = 0) be-
comes

G(λT,λφ) =U(λT,λφ)−λT S(λT,λφ) (13)

= λU(T,φ)−λT S(T,φ) (14)

= λG(T,φ) , (15)

showing that the Gibbs energy of the condensed phases is linear
with respect to a simultaneous scaling of T and φ . This proves
eq. (3-5) in the manuscript, and provides the means to correct
the Gibbs energy. It should be pointed out that this holds for
any temperature sufficiently high to consider the system in the
classical picture, which thus certainly including the boiling and
melting points of most elements.

Let us now move to the ideal gas and rationalize why it behaves
different, or, in other words, why it does not scale like the solid
and liquid. Using Stirling’s approximation, lnN! = N lnN−N, the
Helmholtz energy of the ideal gas takes the form

F id =−kBT lnZ (16)

=−NkBT ln
[(

mkBT
2π h̄2

)3/2 V
N

]
− kTBN (17)

The partial derivatives

S =
∂F
∂T

∣∣∣∣
V,N

=−kBT
lnZ
∂T

∣∣∣∣
V,N

(18)

p =
∂F
∂V

∣∣∣∣
T,N

(19)

are used to obtain expressions for the entropy and pressure

S = NkB

(
5
2
+ ln

[(
mkBT
2π h̄2

)3/2 V
N

])
(20)

pV = NkBT (21)

since U = F +T S, we have

U = kBT 2 lnZ
∂T

∣∣∣∣
V,N

(22)

=
3
2

NkBT . (23)

and because G = F + pV

G =−NkBT ln
[(

mkBT
2π h̄2

)3/2 V
N

]
. (24)

Upon scaling of the temperature (and potential) with λ , a new
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term shows up in the Gibbs energy of the ideal gas

G(λT ) =−NkBλT ln
[
(λT )5/2

(
mkB

2π h̄2

)3/2 kB

P

]
(25)

= NkBλT ln
[

T 5/2
(

mkB

2π h̄2

)3/2 kB

P

]
+NkλT ln[λ 5/2] (26)

= λF(T )+NkBλT ln[λ 5/2] . (27)

Since the ideal gas is – in constrast to the condensed phases – in-
dependent on the interaction potential, the above derived relation
merely show the temperature-dependence of the Gibbs energy of
the gas. Unsurprisingly, Gg(T ) is not linear in T, and as a con-
sequence, the simple scaling of the BP is not possible. However,
as evident from eqs. (21-23), the entire Gibbs energy curve for
the liquid phase can be corrected for linear changes in the poten-
tial, and the corrected BP extracted as the intersect between the
corrected Gibbs energy of the liquid Gl(T,λφ) and the unaltered
Gibbs energy of the gas phase Gg(T ).
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Table 3 Calculated Gibbs energies, internal energies (in eV/atom), as well
as classical and electronic entropies (in meV/[atom*K]) for the liquid
phase of all studied elements.

DFA, Tsim, Teff G U S Sel
Xenon

PBE-D3, 165, 165 −0.2368 −0.1406 0.5831 0.0
Sodium

PBEsol, 1000, 959 −1.8091 −0.8605 0.9486 0.0112
Potassium

PBE, 1000, 1073 −1.6822 −0.5685 1.1137 0.0200
PBE-D3, 1000, 945 −1.7617 −0.6803 1.0822 0.0182
PBEsol, 1000, 1002 −1.7311 −0.6371 1.0940 0.0188

Boron
PBE-D3, 4000, 3664 −8.5304 −4.8373 0.9233 0.0248
Aluminum

PBE, 2800, 2782 −5.5099 −2.5913 1.0488 0.0327
Calcium

PBE, 1800, 1729 −3.2486 −1.3322 1.0644 0.0658
PBE-D3, 1800, 1540 −3.4238 −1.5414 1.0327 0.0657
PBEsol, 1800, 1568 −3.4256 −1.5298 1.0458 0.0656
PBEsol, 2100, 1829 −3.7680 −1.4770 1.0909 0.0755

Strontium
PBE, 1570, 1680 −2.9156 −1.1088 1.1509 0.0621

PBE-D3, 1800, 1712 −3.3560 −1.2506 1.1697 0.0707
PBEsol, 1800, 1714 −3.3618 −1.2305 1.1841 0.0708

Barium
PBE, 2000, 2026 −3.9186 −1.2899 1.3144 0.1088

PBE-D3, 2000, 1830 −4.0781 −1.4942 1.2920 0.1020
Manganese

PBE, 3200, 2402 −6.3447 −2.9140 1.0721 0.1307
RPBE, 2400, 2198 −4.7648 −2.3975 0.9852 0.0987
SCAN, 2400, 2342 −4.4795 −2.1522 0.9697 0.0833

Copper
PBE, 2700, 2705 −5.5273 −2.5896 1.0881 0.0175
PBE, 3000, 3006 −5.8769 −2.5039 1.1243 0.0220

Mercury
soPBEsol, 700, 753 −1.0814 −0.3609 1.0279 0.0045
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